精英家教網 > 高中數學 > 題目詳情
已知函數,設曲線在與軸交點處的切線為,的導函數,滿足
(1)求;
(2)設,,求函數上的最大值;
(3)設,若對于一切,不等式恒成立,求實數的取值范圍.
(1);(2);(3)

試題分析:(1)三次函數的導數是二次函數,由,知其對稱軸,曲線的切線問題,可利用導數的幾何意義(切點處切線的斜率)列出方程組求解;(2),畫出函數圖象考察其單調性,根據其單調區間對的值分類討論求出其最大值;(3)對不等式進行化簡,得恒成立,即,且,對任意的成立,然后又轉化為求函數的最值問題,要注意,從而有.
試題解析:(1),∵,
∴函數的圖象關于直線對稱,,             2分
∵曲線在與軸交點處的切線為,∴切點為,
,解得,則                5分
(2)∵,
,其圖象如圖                      7分
時,,
時,,
時,,

綜上                                  10分
(3),
時,,所以不等式等價于恒成立,
解得,且,                                            13分
,得,,所以,
,∵,∴所求的實數的的取值范圍是       16分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,為函數的導函數.
(1)設函數f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數,求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數有極小值
(Ⅰ)求實數的值;
(Ⅱ)若,且對任意恒成立,求的最大值為.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,(其中,),且函數的圖象在點處的切線與函數的圖象在點處的切線重合.
(Ⅰ)求實數a,b的值;
(Ⅱ)若,滿足,求實數的取值范圍;
(Ⅲ)若,試探究的大小,并說明你的理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線處的切線與兩坐標軸圍成三角形區域為(包含三角形內部與邊界).若點是區域內的任意一點,則的取值范圍是__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知R上可導函數的圖像如圖所示,則不等式的解集為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數的導函數為,且滿足關系式,則的值等于(   )
A.2B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數,則=          .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视