【題目】已知函數,那么下列結論中錯誤的是( )
A. 若是
的極小值點,則
在區間
上單調遞減
B. ,使
C. 函數的圖像可以是中心對稱圖形
D. 若是
的極值點,則
【答案】A
【解析】分析:對于選項A,先求導得,設其對應方程
的兩根為
。根據一元二次不等式的解法可得函數
的增區間為
,減區間為
,由此可得選項A說法錯誤;由選項A的解題過程可得選項B、D正確;對于選項C,取特殊值
,得特殊函數
,因為函數
為奇函數,所以選項C正確。
詳解:對于選項A,,假設方程
的兩根為
。根據一元二次不等式的解法可得:由
得
或
,由
得
,所以函數
的增區間為
,減區間為
,極小值點為
,所以選項A錯誤;
對于選項B,由選項A的解題過程可知在區間上,一定
,使
,所以選項B正確。
對于選項C,當時,函數
,此函數圖像關于原點對稱。所以選項C正確;
對于選項D,由選項A的解題過程可知:若是
的極值點,則
。所以選項D正確。
故選A。
科目:高中數學 來源: 題型:
【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為(
,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72
,肚臍至足底長度為103
,根據以上數據,作為形象設計師的你,對TA的著裝建議是( )
A.身材完美,無需改善B.可以戴一頂合適高度的帽子
C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設甲、乙、丙三個乒乓球協會分別選派3,1,2名運動員參加某次比賽,甲協會運動員編號分別為,
,
,乙協會編號為
,丙協會編號分別為
,
,若從這6名運動員中隨機抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結果;
(2)求丙協會至少有一名運動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運動員來自同一協會的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了實現綠色發展,避免浪費能源,某市政府計劃對居民用電采用階梯收費的方法.為此,相關部分在該市隨機調查了戶居民六月份的用電量(單位:
)和家庭收入(單位:萬元),以了解這個城市家庭用電量的情況.
用電量數據如下:
.
對應的家庭收入數據如下:
.
(Ⅰ)根據國家發改委的指示精神,該市計劃實施階階梯電價,使
的用戶在第一檔,電價為
元/
;
的用戶在第二檔,電價為
元/
;
的用戶在第三檔,電價為
元/
,試求出居民用電費用
與用電量
間的函數關系;
(Ⅱ)以家庭收入為橫坐標,電量
為縱坐標作出散點圖(如圖),求
關于
的回歸直線方程(回歸直線方程的系數四舍五入保留整數).
(Ⅲ)小明家的月收入元,按上述關系,估計小明家月支出電費多少元?
參考數據:,
,
,
,
.
參考公式:一組相關數據,
,…,
的回歸直線方程
的斜率和截距的最小二乘法估計分別為
,
,其中
,
為樣本均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于與
有表格中的數據,且
與
線性相關,由最小二乘法得
.
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求與
的線性回歸方程;
(2)現有第二個線性模型:,且
.若與(1)的線性模型比較,哪一個線性模型擬合效果比較好,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中:
①若,滿足
,則
的最大值為
;
②若,則函數
的最小值為
③若,滿足
,則
的最小值為
④函數的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{xn}是各項均為正數的等比數列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求數列{xn}的通項公式;
(Ⅱ)如圖,在平面直角坐標系xOy中,依次連接點P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折線P1 P2…Pn+1 , 求由該折線與直線y=0,x=x1 , x=xn+1所圍成的區域的面積Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
,
.
(1)直線是否過定點?若過定點,求出該定點坐標,若不過定點,請說明理由;
(2)已知點,若直線
上存在點
滿足條件
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com