【題目】已知極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同直線
的極坐標方程為
,曲線C的參數方程為
為參數
,設直線l與曲線C交于A,B兩點.
寫出直線
的普通方程與曲線C的直角坐標方程;
已知點P在曲線C上運動,求點P到直線
距離的最大值.
科目:高中數學 來源: 題型:
【題目】北京故宮博物院成立于1925年10月10日,是在明、清朝兩代皇宮及其宮廷收藏的基礎上建立起來的中國綜合性博物館,每年吸引著大批游客參觀游覽下圖是從2012年到2017年每年參觀人數的折線圖
根據圖中信息,下列結論中正確的是
A. 2013年以來,每年參觀總人次逐年遞增
B. 2014年比2013年增加的參觀人次不超過50萬
C. 2012年到2017年這六年間,2017年參觀總人次最多
D. 2012年到2017年這六年間,平均每年參觀總人次超過160萬
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓過點
,且圓心
在直線
上.
(1) 求圓的方程;
(2)問是否存在滿足以下兩個條件的直線:①斜率為
;②直線被圓
截得的弦為
,以
為直徑的圓過原點. 若存在這樣的直線,請求出其方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a,b為正數,給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣
=1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等腰△ABC中,AC=BC= ,AB=2,E,F分別為AC,BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=
.
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班學生一次數學考試成績頻率分布直方圖如圖所示,數據分組依次為[70,90),[90,110),[110,130),[130,150],若成績大于等于90分的人數為36,則成績在[110,130)的人數為( )
A.12
B.9
C.15
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ +b(x≠0),其中a,b∈R.若對任意的a∈[
,2],不等式f(x)≤10在x∈[
,1]上恒成立,則b的取值范圍為明 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了50人,他們年齡的頻數分布及支持“生育二胎”人數如表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統計數據填下面2乘2列聯表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15),[35,45)的被調查人中各隨機選取兩人進行調查,記選中的4人不支持“生育二胎”人數為ξ,求隨機變量ξ的分布列及數學期望;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
參考數據:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com