精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=

(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.

【答案】
(1)解: cos∠CAD= = =
(2)解:∵cos∠BAD=﹣

∴sin∠BAD= = ,

∵cos∠CAD= ,

∴sin∠CAD= =

∴sin∠BAC=sin(∠BAD﹣∠CAD)=sin∠BADcos∠CAD﹣cos∠BADsin∠CAD= × + × = ,

∴由正弦定理知 =

∴BC= sin∠BAC= × =3


【解析】(1)利用余弦定理,利用已知條件求得cos∠CAD的值.(2)根據cos∠CAD,cos∠BAD的值分別,求得sin∠BAD和sin∠CAD,進而利用兩角和公式求得sin∠BAC的值,最后利用正弦定理求得BC.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續購買該險種的投保人稱為續保人,續保人本年度的保費與其上年度出險次數的關聯如下:

上年度出險次數

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

隨機調查了該險種的200名續保人在一年內的出險情況,得到如下統計表:

出險次數

0

1

2

3

4

≥5

頻數

60

50

30

30

20

10

(1)記A為事件:“一續保人本年度的保費不高于基本保費”,求P(A)的估計值;

(2)記B為事件:“一續保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;

(3)求續保人本年度平均保費的估計值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解一片經濟林的生長情況,隨機抽測了其中60株樹木的底部周長(單位:cm),所得數據均在區間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有株樹木的底部周長小于100cm.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】盒中共有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同.
(1)從盒中一次隨機取出2個球,求取出的2個球顏色相同的概率P;
(2)從盒中一次隨機取出4個球,其中紅球、黃球、綠球的個數分別記為x1 , x2 , x3 , 隨機變量X表示x1 , x2 , x3中的最大數,求X的概率分布和數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,公路AMAN圍成一塊頂角為α的角形耕地,其中tanα=-2,在該塊土地中P處有一小型建筑,經測量,它到公路AM,AN的距離分別為3km,km,現要過點P修建一條直線公路BC,將三條公路圍成的區域ABC建成一個工業園,為盡量減少耕地占用,問如何確定B點的位置,使得該工業園區的面積最?并求最小面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列的前項和為,,數列滿足:,.

(1)求

(2)求數列的通項公式及其前項和;

(3)記集合,若的子集個數為32,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為實常數,函數.

(1)若是減函數,求實數的取值范圍;

(2)當時函數有兩個不同的零點,求證:.(注:為自然對數的底數);

(3)證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a是一個各位數字都不是0且沒有重復數字三位數,將組成a的3個數字按從小到大排成的三位數記為I(a),按從大到小排成的三位數記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,輸出的結果b=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.

(1)證明:AC=AB1;
(2)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视