【題目】已知函數,其中
.
(1)若,求曲線
在
處的切線方程;
(2)設函數若至少存在一個
,使得
成立,求實數a的取值范圍.
【答案】(1)(2)
【解析】
(1)求導后代入求得
在
處的切線斜率,再利用點斜式求得切線方程即可.
(2)求導后分與
時,分析單調性再根據函數性質的最值滿足的條件列式求不等式即可.
(1)當時,
,
∴,即切線斜率為2,故由點斜式方程可得切線方程為
,即
(2)原問題等價于至少存在一個,使得
成立,
令,
則
,
①當時,
,則函數h(x)在[1,e]上單調遞減,故h(x)min=h(e)=﹣2<0,符合題意;
②當時,令,
,解得
,則函數h(x)在
上單調遞減,令
,解得
,則函數h(x)在
單調遞增,
且,
,
1.當,即
時,在
上
,
單調遞增,
此時不符合題意
2.當,即
時, 在
上
,
單調遞減,
此時滿足題意
3.當,即
時,
,不滿足題意
綜上,實數a的取值范圍為.
科目:高中數學 來源: 題型:
【題目】2019年11月18日國際射聯步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯步手槍世界杯總決賽時隔10年再度走進中國.為了增強趣味性,并實時播報現場賽況,我,F場小記者李明和播報小記者王華設計了一套播報轉碼法,發送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的的26個字母(不論大小寫)依次對應1,2,3,…,26這26個自然數通過變換公式:
,將明文轉換成密文,如
,即
變換成
,即
變換成
.若按上述規定,若王華收到的密文是
,那么原來的明文是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年1月26日,甘肅省人民政府辦公廳發布《甘肅省關于餐飲業質量安全提升工程的實施意見》,衛生部對16所大學食堂的“進貨渠道合格性”和“食品安全”進行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:
(1)現從16所大學食堂中隨機抽取3個,求至多有1個評分不低于9分的概率;
(2)以這16所大學食堂評分數據估計大學食堂的經營性質,若從全國的大學食堂任選3個,記表示抽到評分不低于9分的食堂個數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海洋藍洞是地球罕見的自然地理現象,被喻為“地球留給人類保留宇宙秘密的最后遺產”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,
兩點間的距離,現在珊瑚群島上取兩點
,
,測得
,
,
,
,則
,
兩點的距離為___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數方程為(
為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)過點,傾斜角為
的直線l與曲線C相交于M,N兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設計各面是玻璃平面的無底正四棱柱將其罩住,罩內充滿保護文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費用最少為( )元
A.4500B.4000C.2880D.2380
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
(1)連結BE,證明:平面
;
(2)在棱上是否存在點G,使得
平面
,若存在,直接指出點G的位置
不必說明理由
,并求出此時三棱錐
的體積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列,對任意
都有
,(其中k、b、p是常數).
(1)當,
,
時,求
;
(2)當,
,
時,若
,
,求數列
的通項公式;
(3)若數列中任意(不同)兩項之和仍是該數列中的一項,則稱該數列是“封閉數列”.當
,
,
時,設
是數列
的前n項和,
,試問:是否存在這樣的“封閉數列”
,使得對任意
,都有
,且
.若存在,求數列
的首項
的所有取值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com