精英家教網 > 高中數學 > 題目詳情

已知函數f(x)是定義在R上的奇函數,并且當x∈(0,+∞)時,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

(1)-3.  (2) f(x)=

解析試題分析:(1)因為f(x)為奇函數,且當x∈(0,+∞)時,f(x)=2x
所以f(log2)=f(-log23)=-f(log23)=-2log23=-3.   (6分)
(2)設任意的x∈(-∞,0),則-x∈(0,+∞),
因為當x∈(0,+∞)時,f(x)=2x,所以f(-x)=2x
又因為f(x)是定義在R上的奇函數,則f(-x)=-f(x),
所以f(x)=-f(-x)=-2x,即當x∈(-∞,0)時,f(x)=-2x; (8分)
又因為f(0)=-f(0),所以f(0)=0,  (10分)
綜上可知,f(x)=.   (12分)
考點:本題考查了函數的性質及求值
點評:利用函數的奇偶性求對稱區間上的函數的表達式需注意:(1)在哪個區間求解析式,就設在哪個區間里;(2)轉化為已知的解析式進行代入;(3)利用的奇偶性把寫成,從而求出

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知
(1)求函數的定義域;
(2)判斷并證明函數的奇偶性;
(3)若,試比較的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數是定義在區間上的偶函數,且滿足
(1)求函數的周期;
(2)已知當時,.求使方程上有兩個不相等實根的的取值集合M.
(3)記,表示使方程上有兩個不相等實根的的取值集合,求集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函數f(x)在區間[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)證明:對于一切的實數x都有f(x)x;
(2)若函數存在兩個零點,求a的取值范圍
(3)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中,記函數的定義域為D
(1)求函數的定義域D;
(2)若函數的最小值為,求的值;
(3)若對于D內的任意實數,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數都在區間上有定義,對任意,都有成立,則稱函數為區間上的“伙伴函數”
(1)若為區間上的“伙伴函數”,求的范圍。
(2)判斷是否為區間上的“伙伴函數”?
(3)若為區間上的“伙伴函數”,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于定義在實數集上的兩個函數,若存在一次函數使得,對任意的,都有,則把函數的圖像叫函數的“分界線”。現已知,為自然對數的底數),
(1)求的遞增區間;
(2)當時,函數是否存在過點的“分界線”?若存在,求出函數的解析式,若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的定義域;
(2)判定函數的奇偶性,并加以證明;
(3)判定的單調性,并求不等式的解集.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视