【題目】如圖:已知正方形的邊長為
,沿著對角線
將
折起,使
到達
的位置,且
.
(1)證明:平面平面
;
(2)若是
的中點,點
在線段
上,且滿足直線
與平面
所成角的正弦值為
,求
的值.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,橢圓
:
,點
在橢圓
上,過點
作圓
的切線,其切線長為橢圓
的短軸長.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線與橢圓
的另一個交點為
,點
在橢圓
上,且
,直線
與
軸交于
點.設直線
,
的斜率分別為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有10個不同的產品,其中4個次品,6個正品.現每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發現,則該情況出現的概率是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年11月18日國際射聯步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯步手槍世界杯總決賽時隔10年再度走進中國.為了增強趣味性,并實時播報現場賽況,我校現場小記者李明和播報小記者王華設計了一套播報轉碼法,發送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的的26個字母(不論大小寫)依次對應1,2,3,…,26這26個自然數通過變換公式:
,將明文轉換成密文,如
,即
變換成
,即
變換成
.若按上述規定,若王華收到的密文是
,那么原來的明文是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,點A為該橢圓的左頂點,過右焦點
的直線l與橢圓交于B,C兩點,當
軸時,三角形ABC的面積為18.
求橢圓
的方程;
如圖,當動直線BC斜率存在且不為0時,直線
分別交直線AB,AC于點M、N,問x軸上是否存在點P,使得
,若存在求出點P的坐標;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年1月26日,甘肅省人民政府辦公廳發布《甘肅省關于餐飲業質量安全提升工程的實施意見》,衛生部對16所大學食堂的“進貨渠道合格性”和“食品安全”進行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:
(1)現從16所大學食堂中隨機抽取3個,求至多有1個評分不低于9分的概率;
(2)以這16所大學食堂評分數據估計大學食堂的經營性質,若從全國的大學食堂任選3個,記表示抽到評分不低于9分的食堂個數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數方程為(
為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)過點,傾斜角為
的直線l與曲線C相交于M,N兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若動點到定點
與定直線
的距離之和為
.
(1)求點的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;
(2)(理)記(1)得到的軌跡為曲線,問曲線
上關于點
對稱的不同點有幾對?請說明理由.
(3)(文)記(1)得到的軌跡為曲線,若曲線
上恰有三對不同的點關于點
對稱,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com