【題目】已知sinα+cosα= (0<α<π),則tanα=( )
A.
B.
C.
D. 或
【答案】B
【解析】解:將已知等式sinα+cosα= ①兩邊平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=
, ∴2sinαcosα=﹣
<0,
∵0<α<π,
∴sinα>0,cosα<0,即sinα﹣cosα>0,
∴(sinα﹣cosα)2=1﹣2sinαcosα= ,
∴sinα﹣cosα= ②,
聯立①②,解得:sinα= ,cosα=﹣
,
則tanα=﹣ .
故選B
已知等式兩邊平方,利用同角三角函數間的基本關系化簡,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函數間的基本關系求出sinα與cosα的值,即可求出tanα的值.
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是R上的偶函數,且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數y=f(x)的表達式,并直接寫出其單調區間(不需要證明);
(3)若f(lga)+2<0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 且a2=3,S5=25.
(1)求數列{an}的通項公式an;
(2)設數列{ }的前n項和為Tn , 是否存在k∈N* , 使得等式2﹣2Tk=
成立,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣a|+|x﹣5|.
(1)當a=1時,求f(x)的最小值;
(2)如果對任意的實數x,都有f(x)≥1成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 為圓
的直徑,點
在圓
上,且
,矩形
所在的平面和圓
所在的平面垂直,且
.
(1)求證:平面平面
;
(2)在線段上是否存在了點
,使得
平面
?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且 AC=BC= ,O、M分別為AB和VA的中點.
(1)求證:VB∥平面MOC;
(2)求直線MC與平面VAB所成角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,
,其前
項和
滿足
.
(1)求證:數列為等差數列,并求
的通項公式;
(2)設 ,求數列
的前
項和
;
(3)設為非零整數
,是否存在
的值,使得對任意
恒成立,若存在求出
的值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,直平行六面體中,
為棱
上任意一點,
為底面
(除
外)上一點,已知
在底面
上的射影為
,若再增加一個條件,就能得到
,現給出以下條件:
①;②
在
上;③
平面
;④直線
和
在平面
的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com