【題目】如圖,在幾何體中,平面
⊥底面
,四邊形
是正方形,
,
是
的中點,且
,
(1)證明://平面
;
(2)求直線與平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】某家庭記錄了未使用節水龍頭50天的日用水量數據(單位:m3)和使用了節水龍頭50天的日用水量數據,得到頻數分布表如下:
未使用節水龍頭50天的日用水量頻數分布表
日用 水量 | |||||||
頻數 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節水龍頭50天的日用水量頻數分布表
日用 水量 | ||||||
頻數 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節水龍頭50天的日用水量數據的頻率分布直方圖:
(2)估計該家庭使用節水龍頭后,日用水量小于0.35 m3的概率;
(3)估計該家庭使用節水龍頭后,一年能節省多少水?(一年按365天計算,同一組中的數據以這組數據所在區間中點的值作代表.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于圓周率,數學發展史上出現過許多有創意的求法,如著名的普豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計
的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數對
,再統計其中x,y能與1構成鈍角三角形三邊的數對
的個數m,最后根據統計個數m估計
的值.如果統計結果是
,那么可以估計
的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數值越小,星星就越亮;星等的數值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森(
)又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足
.其中星等為
的星的亮度為
.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的
倍,則與
最接近的是(當
較小時,
)
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(其中
為參數,且
,在以
為極點、
軸的非負半軸為極軸的極坐標系(兩種坐標系取相同的單位長度)中,曲線
的極坐標方程為
,設直線
經過定點
,且與曲線
交于
、
兩點.
(Ⅰ)求點的直角坐標及曲線
的直角坐標方程;
(Ⅱ)求證:不論為何值時,
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的參數方程為
(
為參數),圓
與圓
外切于原點
,且兩圓圓心的距離
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系.
(1)求圓和圓
的極坐標方程;
(2)過點的直線
,
與圓
異于點
的交點分別為點
,
,與圓
異于點
的交點分別為點
,
,且
,求四邊形面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:橢圓的離心率為
,且
,過左焦點
作一條直線交橢圓于
、
兩點,過線段
的中點
作
的垂線交
軸于點
.
(1)求橢圓方程;
(2)當面積最大時,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復始,無窮無盡。2019年是“干支紀年法”中的己亥年,那么2026年是“干支紀年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標xOy中,以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(1)求橢圓的直角坐標方程;
(2)已知過的直線與橢圓C交于A,B兩點,且兩點與左右頂點不重合,若
,求四邊形
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com