精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在幾何體中,平面底面,四邊形是正方形,的中點,且

1)證明://平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見解析(2

【解析】

1)連接交于點,連接,證明四邊形是平行四邊形得到答案.

2)過點作面與面的交線,交直線,證明與面所成的角,計算得到答案.

1)證明:如圖1所示,連接,交于點,連接.

因為四邊形是正方形,所以的中點,

又已知的中點,所以

又因為,所以,即四邊形是平行四邊形,

所以,因此平面.

2)如圖2所示,過點作面與面的交線,交直線.

作線的垂線,垂足為.

再過作線的垂線,垂足為.

因為,,所以

所以,又因為,

所以,所以與面所成的角,

因為,所以,

的中點,如圖2所示,邊上的高,

,

因為,所以,所以,

因為,所以,,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某家庭記錄了未使用節水龍頭50天的日用水量數據(單位:m3)和使用了節水龍頭50天的日用水量數據,得到頻數分布表如下:

未使用節水龍頭50天的日用水量頻數分布表

日用

水量

頻數

1

3

2

4

9

26

5

使用了節水龍頭50天的日用水量頻數分布表

日用

水量

頻數

1

5

13

10

16

5

(1)在答題卡上作出使用了節水龍頭50天的日用水量數據的頻率分布直方圖:

2)估計該家庭使用節水龍頭后,日用水量小于0.35 m3的概率;

3)估計該家庭使用節水龍頭后,一年能節省多少水?(一年按365天計算,同一組中的數據以這組數據所在區間中點的值作代表.)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于圓周率,數學發展史上出現過許多有創意的求法,如著名的普豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數對,再統計其中x,y能與1構成鈍角三角形三邊的數對的個數m,最后根據統計個數m估計的值.如果統計結果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數值越小,星星就越亮;星等的數值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(較小時, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為(其中為參數,且,在以為極點、軸的非負半軸為極軸的極坐標系(兩種坐標系取相同的單位長度)中,曲線的極坐標方程為,設直線經過定點,且與曲線交于、兩點.

(Ⅰ)求點的直角坐標及曲線的直角坐標方程;

(Ⅱ)求證:不論為何值時,為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓的參數方程為為參數),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點,軸正半軸為極軸建立極坐標系.

(1)求圓和圓的極坐標方程;

(2)過點的直線,與圓異于點的交點分別為點,,與圓異于點的交點分別為點,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:橢圓的離心率為,且,過左焦點作一條直線交橢圓于兩點,過線段的中點的垂線交軸于點.

1)求橢圓方程;

2)當面積最大時,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復始,無窮無盡。2019年是“干支紀年法”中的己亥年,那么2026年是“干支紀年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標xOy中,以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為.

1)求橢圓的直角坐標方程;

2)已知過的直線與橢圓C交于A,B兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视