精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,則實數a的取值范圍是(
A.(﹣∞,2]
B.
C.
D.[2,+∞)

【答案】C
【解析】解:∵函數f(x)=(1﹣x)|x﹣3|= ,
其函數圖象如下圖所示:
由函數圖象可得:
函數f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,
當x≥3時,f(x)=﹣x2+4x﹣3=﹣1,解得x=2+ ,
當x<3時,f(x)=x2﹣4x+3=﹣1,解得x=2,
實數a須滿足2≤a≤2+
故實數a的集合是[2,2+ ].
故選:C.

【考點精析】掌握函數的最值及其幾何意義是解答本題的根本,需要知道利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲担

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《最強大腦》是大型科學競技類真人秀節目,是專注傳播腦科學知識和腦力競技的節目.某機構為了了解大學生喜歡《最強大腦》是否與性別有關,對某校的100名大學生進行了問卷調查,得到如下列聯表:

喜歡《最強大腦》

不喜歡《最強大腦》

合計

男生

15

女生

15

合計

已知在這100人中隨機抽取1人抽到不喜歡《最強大腦》的大學生的概率為0.4

( I)請將上述列聯表補充完整;判斷是否有99.9%的把握認為喜歡《最強大腦》與性別有關,并說明理由;

( II)已知在被調查的大學生中有5名是大一學生,其中3名喜歡《最強大腦》,現從這5名大一學生中隨機抽取2人,抽到喜歡《最強大腦》的人數為X,求X的分布列及數學期望.

下面的臨界值表僅參考:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=2x2+bx+c.
(1)對任意x∈[﹣1,1],f(x)的最大值與最小值之差不大于6,求b的取值范圍;
(2)若f(x)=0有兩個不同實根,f(f(x))無零點,求證: >1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個周期內的圖象如圖所示.

(1)求函數f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ ]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AB=2,AD= ,∠DAB= ,PD⊥AD,PD⊥DC.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D為 ,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面幾種推理中是演繹推理的序號為(
A.由金、銀、銅、鐵可導電,猜想:金屬都可導電
B.猜想數列 {an}的通項公式為 (n∈N+
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測空間直角坐標系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量 (單位:t)和年利潤 (單位:千元)的影響.對近8年的年宣傳費和年銷售量 (i1,2,8)數據作了初步處理,得到右面的散點圖及一些統計量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,

(1)根據散點圖判斷, 哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程;

(3)已知這種產品的年利潤的關系為.根據(2)的結果回答下列問題:

①年宣傳費=49時,年銷售量及年利潤的預報值是多少?

②年宣傳費為何值時,年利潤的預報值最大?

附:對于一組數據, ,,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等比數列{an}的前n項和為Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=|2n﹣5|an , 求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视