【題目】已知函數f(x)=3x2﹣kx﹣8,x∈[1,5].
(1)當k=12時,求f(x)的值域;
(2)若函數f(x)具有單調性,求實數k的取值范圍.
【答案】
(1)解:當K=12時,f(x)=3(x﹣2)2﹣20,x∈[1,5],
f(x)在[1,2]是減函數,在[2,5]上是增函數,
∴f(x)min=f(2)=﹣20,又f(1)<f(5),且f(5)=7,
∴f(x)在[1,5]的值域為:[﹣20,7]
(2)解:由已知,f(x)=3 ﹣8,x∈[1,5],
若使f(x)在區間[1,5]上具有單調性,
當且僅當 ,或者
,
解得k≤6或者k≥30,
∴實數k的求值范圍為(﹣∞,6]∪[30,+∞)
【解析】(1)只要將k=12代入解析式,然后配方,明確區間[1,5]被對稱軸分為兩個單調區間后的單調性,然后求最值;(2)若使f(x)在區間[1,5]上具有單調性,只要將原函數配方,使區間[1,5]在對稱軸的一側即可,得到關于k的不等式解之.
【考點精析】根據題目的已知條件,利用二次函數的性質的相關知識可以得到問題的答案,需要掌握當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減.
科目:高中數學 來源: 題型:
【題目】一條寬為的兩平行河岸有村莊
和供電站
,村莊
與
的直線距離都是
,
與河岸垂直,垂足為
現要修建電纜,從供電站
向村莊
供電.修建地下電纜、水下電纜的費用分別是
萬元
、
萬元
.
(1) 如圖①,已知村莊與
原來鋪設有電纜
,現先從
處修建最短水下電纜到達對岸后后,再修建地下電纜接入原電纜供電,試求該方案總施工費用的最小值;
(2) 如圖②,點在線段
上,且鋪設電纜的線路為
.若
,試用
表示出總施工費用
(萬元)的解析式,并求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的三個內角A,B,C對應的邊分別a,b,c,且acosC,bcosB,ccosA成等差數列,則角B等于( )
A.30°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實數a的值;
(Ⅱ)若p是q的充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)為定義在[﹣1,1]上的奇函數,當x∈[﹣1,0]時,函數解析式為 .
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(0,+∞)上的函數f(x)滿足下面三個條件:
①對任意正數a,b,都有f(a)+f(b)=f(ab);
②當x>1時,f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)試用單調性定義證明:函數f(x)在(0,+∞)上是減函數;
(III)求滿足f(log4x)>2的x的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)為定義在R上的奇函數,且在(0,+∞)內是增函數,又f(2)=0,則不等式x5f(x)>0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓M過坐標原點O且圓心在曲線 上.
(1)若圓M分別與x軸、y軸交于點A、B(不同于原點O),求證:△AOB的面積為定值;
(2)設直線 與圓M 交于不同的兩點C,D,且|OC|=|OD|,求圓M的方程;
(3)設直線 與(Ⅱ)中所求圓M交于點E、F,P為直線x=5上的動點,直線PE,PF與圓M的另一個交點分別為G,H,求證:直線GH過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com