【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現有均勻的粒子散落在正方形中,問粒子落在中間帶形區域的概率是多少?
【答案】答:因為均勻的粒子落在正方形內任何一點是等可能的
所以符合幾何概型的條件。
設A=“粒子落在中間帶形區域”則依題意得
正方形面積為:25×25=625
兩個等腰直角三角形的面積為:2××23×23=529
帶形區域的面積為:625-529=96
∴ P(A)=
【解析】
求出帶形區域的面積,并求出正方形面積用來表示全部基本事件,再由幾何概型公式,即可求解.
因為均勻的粒子落在正方形內任何一點是等可能的
所以符合幾何概型的條件.
設A=“粒子落在中間帶形區域”則依題意得
正方形面積為:25×25=625
兩個等腰直角三角形的面積為:2××23×23=529
帶形區域的面積為:625﹣529=96
∴P(A)=,
則粒子落在中間帶形區域的概率是.
故答案為:.
科目:高中數學 來源: 題型:
【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為0-25(分貝),并規定測試值在區間
為非常優秀,測試值在區間
為優秀.某班50名同學都進行了聽力測試,所得測試值制成頻率分布直方圖:
(Ⅰ)現從聽力等級為的同學中任意抽取出4人,記聽力非常優秀的同學人數為
,求
的分布列與數學期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個更高級別的聽力測試,測試規則如下:四個音叉的發生情況不同,由強到弱的次序分別為1,2,3,4.測試前將音叉隨機排列,被測試的同學依次聽完后給四個音叉按發音的強弱標出一組序號,
,
,
(其中
,
,
,
為1,2,3,4的一個排列).若
為兩次排序偏離程度的一種描述,
,求
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
分別為左,右焦點,
分別為左,右頂點,D為上頂點,原點
到直線
的距離為
.設點
在第一象限,縱坐標為t,且
軸,連接
交橢圓于點
.
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形
的面積,求直線
的方程;
(理)求過點的圓方程(結果用t表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知橢圓兩個焦點的坐標分別是(-2,0),(2,0),并且經過點,求它的標準方程;
(2)已知雙曲線兩個焦點的坐標分別是(0,-6),(0,6),并且經過點(2,-5),求它的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是各項均為正數且公比不等于1的等比數列
,對于函數
,若數列
為等差數列,則稱函數
為“保比差數列函數”,現有定義在
上的如下函數:①
,②
,③
;④
,則為“保比差數列函數”的所有序號為( )
A.①②B.①②④C.③④D.①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數(
),滿足
,且
在
時恒成立.
(1)求、
的值;
(2)若,解不等式
;
(3)是否存在實數,使函數
在區間
上有最小值
?若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1:ρ=1,曲線C2:(t為參數)
(1)求C1與C2交點的坐標;
(2)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線C1′與C2′,寫出C1′與C2′的參數方程,C1與C2公共點的個數和C1′與C2′公共點的個數是否相同,說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com