精英家教網 > 高中數學 > 題目詳情

【題目】(1)已知橢圓兩個焦點的坐標分別是(-2,0),(2,0),并且經過點,求它的標準方程;

(2)已知雙曲線兩個焦點的坐標分別是(0,-6),(0,6),并且經過點(2,-5),求它的標準方程.

【答案】(1) (2)

【解析】

(1)由題意可設橢圓方程為,且利用橢圓定義及兩點間的距離公式求得,結合隱含條件求得,則橢圓方程可求;

(2)由題意可設雙曲線的方程為,利用雙曲線的定義及兩點間的距離公式求得,結合隱含條件求得,則雙曲線方程可求.

因為橢圓的焦點在軸上,所以設它的標準方程為

有橢圓的定義知

又因為,所以

因此,所求橢圓的標準方程為.

(2)因為雙曲線的焦點在軸上,所以設它的標準方程為

有雙曲線的定義知

,

又因為,所以

因此,所求雙曲線的標準方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地區高考實行新方案,規定:語文、數學和英語是考生的必考科目,考生還須從物理,化學,生物,歷史地理和政治六個科目中選取三個科目作為選考科目若一個學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定例如學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案

某學校為了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統計選考科目人數如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有8

8

8

4

2

1

1

選考方案待確定的有6

4

3

0

1

0

0

女生

選考方案確定的有10

8

9

6

3

3

1

選考方案待確定的有6

5

4

1

0

0

1

(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?

(Ⅱ)假設男生、女生選擇選考科目是相互獨立的從選考方案確定的8位男生中隨機選出1,從選考方案確定的10位女生中隨機選出1,試求該男生和該女生的選考方案中都含有歷史學科的概率;

(Ⅲ)從選考方案確定的8名男生中隨機選出2,設隨機變量,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , , 分別為, , 的中點.

1)求證: 平面;

2)求平面與平面所成銳二面角的大;

3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出集合

(1)求證:函數

(2)(1)可知,是周期函數且是奇函數,于是張三同學得出兩個命題:

命題甲:集合M中的元素都是周期函數;命題乙:集合M中的元素都是奇函數,請對此給出判斷,如果正確,請證明;如果不正確,請舉出反例;

(3)為常數,的充要條件并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某學校擬建一塊五邊形區域的“讀書角”,三角形區域ABE為書籍擺放區,沿著AB、AE處擺放折線形書架(書架寬度不計),四邊形區域為BCDE為閱讀區,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CDm

(1)求兩區域邊界BE的長度;

(2)若區域ABE為銳角三角形,求書架總長度AB+AE的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間為了規定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數據如下:

零件的個數(個)

加工的時間(小時)

(1)在給定的坐標系中畫出表中數據的散點圖;

(2)求出關于的線性回歸方程.

(3)試預測加工個零件需要多少時間?

附錄:參考公式: ,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現有均勻的粒子散落在正方形中,問粒子落在中間帶形區域的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量高于4000億元的省份共有3個;

②與去年同期相比,2017年第一季度五個省的總量均實現了增長;

③去年同期的總量前三位依次是省、省、省;

④2016年同期省的總量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等腰中, ,腰長為, 分別是邊、的中點,將沿翻折,得到四棱錐,且為棱中點,

(Ⅰ)求證: 平面;

(Ⅱ)在線段上是否存在一點,使得平面?若存在,求二面角的余弦值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视