【題目】如圖,某學校擬建一塊五邊形區域的“讀書角”,三角形區域ABE為書籍擺放區,沿著AB、AE處擺放折線形書架(書架寬度不計),四邊形區域為BCDE為閱讀區,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CD=m.
(1)求兩區域邊界BE的長度;
(2)若區域ABE為銳角三角形,求書架總長度AB+AE的取值范圍.
【答案】(1)(2)
【解析】
(1)連接BD,由余弦定理可得BD,由已知可求∠CDB=∠CBD=30°,∠CDE=120°,可得∠BDE=90°,利用勾股定理即可得解BE的值;(2)設∠ABE=α,由正弦定理,可得AB=4sin(120°﹣α),AE=4
sinα,利用三角函數恒等變換的應用化簡可得AB+AE=12sin(α+30°),結合范圍60°<α+30°<120°,利用正弦函數的性質可求AB+AE的最大值,從而得解.
⑴連接BD,在△BDC中,,∠BCD=120°,
由余弦定理,
得,得
又BC=CD,∠BCD=120°,
,
.
△ABE中,BD=3,,由勾股定理
.
故.
⑵設,
則,
在△ABE中,
由正弦定理.
,
,
故
=
,
△ABE為銳角三角形,
故,
,
,
所以暑假的總長度AB+AE的取值范圍是,
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(限定
).
(1)寫出曲線的極坐標方程,并求
與
交點的極坐標;
(2)射線與曲線
與
分別交于點
(
異于原點),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,在邊長為4的正方形ABCD中,E,F分別是邊AB,BC上的點(端點除外),將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′(如圖②).
(1)求證:A′D⊥EF;
(2)當點E,F分別為AB,BC的中點時,求直線A′E與直線BD所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
分別為左,右焦點,
分別為左,右頂點,D為上頂點,原點
到直線
的距離為
.設點
在第一象限,縱坐標為t,且
軸,連接
交橢圓于點
.
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形
的面積,求直線
的方程;
(理)求過點的圓方程(結果用t表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知橢圓兩個焦點的坐標分別是(-2,0),(2,0),并且經過點,求它的標準方程;
(2)已知雙曲線兩個焦點的坐標分別是(0,-6),(0,6),并且經過點(2,-5),求它的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是各項均為正數且公比不等于1的等比數列
,對于函數
,若數列
為等差數列,則稱函數
為“保比差數列函數”,現有定義在
上的如下函數:①
,②
,③
;④
,則為“保比差數列函數”的所有序號為( )
A.①②B.①②④C.③④D.①②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com