【題目】已知函數.
(1)求函數的單調區間;
(2)若方程有兩個不相等的實數根
,
,求證:
.
科目:高中數學 來源: 題型:
【題目】某機構為調查我國公民對申辦奧運會的態度,選了某小區的100位居民調查結果統計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位女教師的概率.
附:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】昆明市某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過300),該社團將該校區在2018年100天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如圖4,把該直方圖所得頻率估計為概率.
空氣質量指數 | ||||||
空氣質量等級 | 1級優 | 2級良 | 3級輕度污染 | 4度中度污染 | 5度重度污染 | 6級嚴重污染 |
(1)請估算2019年(以365天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(2)用分層抽樣的方法共抽取10天,則空氣質量指數在,
,
的天數中各應抽取幾天?
(3)已知空氣質量等級為1級時不需要凈化空氣,空氣質量等級為2級時每天需凈化空氣的費用為2000元,空氣質量等級為3級時每天需凈化空氣的費用為4000元若在(2)的條件下,從空氣質量指數在的天數中任意抽取兩天,求這兩天的凈化空氣總費用
的分布列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線:
(
為參數)和定點
,
是曲線
的左、右焦點,以原點
為極點,以
軸的非負半軸為極軸且取相同單位長度建立極坐標系.
(1)求直線的極坐標方程;
(2)經過點且與直線
垂直的直線
交曲線
于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是正方形,且
,平面
平面
,
,點
為線段
的中點,點
是線段
上的一個動點.
(Ⅰ)求證:平面
平面
;
(Ⅱ)設二面角的平面角為
,試判斷在線段
上是否存在這樣的點
,使得
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 設是實數,若方程
表示雙曲線,則
.
B. “為真命題”是“
為真命題”的充分不必要條件.
C. 命題“,使得
”的否定是:“
,
”.
D. 命題“若為
的極值點,則
”的逆命題是真命題.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com