【題目】已知數列的前
項和
,且
是2與
的等差中項.
(1)求數列的通項公式;
(2)若,求數列
的前
項和
.
科目:高中數學 來源: 題型:
【題目】為了節約水資源,某市準備按照居民家庭年用水量實行階梯水價.水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統計圖.如圖所示,下面四個推斷( )
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數在150﹣180之間;
④該市居民家庭年用水量的平均數不超過180.
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項a1=a,其前n項和為Sn , 且滿足Sn+Sn﹣1=3n2+2n+4(n≥2),若對任意的n∈N* , an<an+1恒成立,則a的取值范圍是( )
A.( ,
)
B.( ,
)
C.( ,
)
D.(﹣∞, )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}是等差數列,前n項和為Sn , {bn}是單調遞增的等比數列,b1=2是a1與a2的等差中項,a3=5,b3=a4+1,若當n≥m時,Sn≤bn恒成立,則m的最小值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2016高考山東文數】已知橢圓C:(a>b>0)的長軸長為4,焦距為2
.
(I)求橢圓C的方程;
(Ⅱ)過動點M(0,m)(m>0)的直線交x軸與點N,交C于點A,P(P在第一象限),且M是線段PN的中點.過點P作x軸的垂線交C于另一點Q,延長線QM交C于點B.
(i)設直線PM、QM的斜率分別為k、k',證明為定值.
(ii)求直線AB的斜率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數y=cos(2x+1)的圖象,只要將函數y=cos2x的圖象( )
A.向左平移1個單位
B.向右平移1個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,其中
是自然對數的底數.
(Ⅰ)判斷函數在
內零點的個數,并說明理由;
(Ⅱ),
,使得不等式
成立,試求實數
的取值范圍;
(Ⅲ)若,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com