【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
【答案】
(1)
解:(1)∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ=20°,
∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,
∴∠BAQ=∠BAP+∠PAQ=40°;
(2)
解:如圖2,∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ,
∵點Q關于直線AC的對稱點為M,
∴AQ=AM,∠QAC=∠MAC,
∴∠MAC=∠BAP,
∴∠BAP+∠PAC=∠MAC+∠CAP=60°,
∴∠PAM=60°,
∵AP=AQ,
∴AP=AM,
∴△APM是等邊三角形,
∴AP=PM.
【解析】(1)根據等腰三角形的性質得到∠APQ=∠AQP,由鄰補角的定義得到∠APB=∠AQC,根據三角形外角的性質即可得到結論;
。2)如圖2根據等腰三角形的性質得到∠APQ=∠AQP,由鄰補角的定義得到∠APB=∠AQC,由點Q關于直線AC的對稱點為M,得到AQ=AM,∠OAC=∠MAC,等量代換得到∠MAC=∠BAP,推出△APM是等邊三角形,根據等邊三角形的性質即可得到結論.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和
都為矩形。
(Ⅰ)若,證明:直線
平面
;
(Ⅱ)設,
分別是線段
,
的中點,在線段
上是否存在一點
,使直線
平面
?請證明你的結論。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知函數(
),記
的導函數為
.
(1)證明:當時,
在
上單調遞增;
(2)若在
處取得極小值,求
的取值范圍;
(3)設函數的定義域為
,區間
,若
在
上是單調函數,
則稱在
上廣義單調.試證明函數
在
上廣義單調.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com