已知定義在區間(0,+∞)上的函數f(x)滿足f=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
科目:高中數學 來源: 題型:解答題
某通訊公司需要在三角形地帶OAC區域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區域BOC內,乙中轉站建在區域AOB內.分界線OB固定,且百米,邊界線AC始終過點B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°,設
百米,
百米.
(1)試將表示成
的函數,并求出函數
的解析式;
(2)當取何值時?整個中轉站的占地面積
最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有實數根,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實根.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=|ax-2|+bln x(x>0,實數a,b為常數).
(1)若a=1,f(x)在(0,+∞)上是單調增函數,求b的取值范圍;
(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義在區間(0,+∞)上的函數f(x)滿足f()=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,解不等式f(|x|)<-2.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,經過村莊A有兩條夾角為60°的公路AB,AC,根據規劃擬在兩條公路之間的區域內建一工廠P,分別在兩條公路邊上建兩個倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設計, 可以使得工廠產生的噪聲對居民的影響最小(即工廠與村莊的距離最遠).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,從點P1(0,0)作軸的垂線交曲線
于點
,曲線在
點處的切線與
軸交于點
.再從
做
軸的垂線交曲線于點
,依次重復上述過程得到一系列點:
;
;…;
,記
點的坐標為
(
).
(1)試求與
的關系(
);
(2)求.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數.
(1)判斷函數的奇偶性,并加以證明;
(2)用定義證明函數在區間
上為增函數;
(3)若函數在區間
上的最大值與最小值之和不小于
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com