【題目】某精密儀器生產車間每天生產個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據多年的生產數據和經驗,這些零件的長度服從正態分布
(單位:微米
),且相互獨立.若零件的長度
滿足
,則認為該零件是合格的,否則該零件不合格.
(1)假設某一天小張抽查出不合格的零件數為,求
及
的數學期望
;
(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.
附:若隨機變量服從正態分布
,則
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點F到左頂點的距離為3.
(1)求橢圓C的方程;
(2)設O是坐標原點,過點F的直線與橢圓C交于A,B兩點(A,B不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】傳染病的流行必須具備的三個基本環節是:傳染源、傳播途徑和人群易感性.三個環節必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區已經出現了新冠狀病毒的感染病人,為了掌握該地區居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?
(2)用樣本估計總體,若從該地區出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,
表示被清華、北大等名校錄取的學生人數)
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過畫散點圖發現與
之間具有線性相關關系,求
關于
的線性回歸方程;(保留兩位有效數字)
(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該?既嗣5娜藬担
(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.
參考公式:,
參考數據:,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點
是線段
上的動點,則下列說法正確的是( )
A.無論點在
上怎么移動,都有
B.當點移動至
中點時,才有
與
相交于一點,記為點
,且
C.無論點在
上怎么移動,異面直線
與
所成角都不可能是
D.當點移動至
中點時,直線
與平面
所成角最大且為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱錐P-ABC中,平面PAB⊥平面ABC,△ABC是邊長為的等邊三角形,
,點O,M分別是AB,BC的中點.
(1)證明:AC//平面POM;
(2)求點B到平面POM的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com