精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}為等比數列,a1=2,公比q>0,且a2,6,a3成等差數列.

(1)求數列{an}的通項公式;

(2)設bn=log2an,,求使的n的值.

【答案】(1); (2)n的取值為1,2,3,4,5.

【解析】

(1)由a2,6,a3成等差數列,知12=a2+a3,由{an}為等比數列,且a1=2,故12=2q+2q2,由此能求出數列{an}的通項公式.

(2)由bn=log22n=n,知bnbn+1由此利用裂項求和法能夠求出由n的取值.

(1)由a2,6,a3成等差數列,

得12=a2+a3

又{an}為等比數列,且a1=2,

故12=2q+2q2,解得q=2,或q=-3,

又q>0,∴q=2,

,

(2)∵,

,

,

故由,得n<6,又n∈N*

∴n的取值為1,2,3,4,5.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知線段的端點的坐標是,端點在圓上運動.

求線段的中點的軌跡的方程;

設圓與曲線的兩交點為,求線段的長;

)若點在曲線上運動,軸上運動,的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】上的函數滿足:①為正常數);②當時,,若的圖象上所有極大值對應的點均落在同一條直線上,則___

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓與圓關于直線對稱.

1)求直線的方程;

2)設圓與圓交于點、,點為圓上的動點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區,在亞洲熱帶地區廣泛栽培.檳榔是重要的中藥材,在南方一些少數民族還有將果實作為一種咀嚼嗜好品,但其被世界衛生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數字,葉表示個位數字).

(1)從班的樣本數據中隨機抽取一個不超過19的數據記為,從班的樣本數據中隨機抽取一個不超過21的數據記為,求的概率;

(2)從所有咀嚼檳榔顆數在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.

組號

分組

頻數

頻率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合計

100

1.000

(1)求頻率分布表中n,p的值,并估計該組數據的中位數(保留l位小數);

(2)為了能選拔出最優秀的學生,高校決定在筆試成績高的第3、45組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?

(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.

組號

分組

頻數

頻率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合計

100

1.000

(1)求頻率分布表中n,p的值,并估計該組數據的中位數(保留l位小數);

(2)為了能選拔出最優秀的學生,高校決定在筆試成績高的第3、45組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?

(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為且滿足:

(1)證明:是等比數列,并求數列的通項公式.

(2)設,若數列是等差數列,求實數的值;

(3)在(2)的條件下,設 記數列的前項和為,若對任意的存在實數,使得,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業通過調查問卷(滿分50分)的形式對本企業900名員工的工作滿意程度進行調查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據以上數據,估計該企業得分大于45分的員工人數;

(2)現用計算器求得這30名員工的平均得分為40.5分,若規定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:

“滿意”的人數

“不滿意”的人數

合計

女員工

16

男員工

14

合計

30

(3)根據上述表中數據,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業員工“性別”與“工作是否滿意”有關?

參考數據:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视