【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點
為圓心的圓的一部分,其中
,
是圓的切線,且
,曲線
是拋物線
的一部分,
,且
恰好等于圓
的半徑.
(1)若米,
米,求
與
的值;
(2)若體育館側面的最大寬度不超過75米,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,已知多面體的底面
是邊長為2的正方形,
底面
,
,且
.
(1)求多面體的體積;
(2)記線段的中點為
,在平面
內過點
作一條直線與平面
平行,要求保留作圖痕跡,但不要求證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點
,過點
且與坐標軸不垂直的直線與橢圓交于
,
兩點,當直線
經過橢圓的一個頂點時其傾斜角恰好為
.
(1)求橢圓的方程;
(2)設為坐標原點,線段
上是否存在點
,使得
?若存在,求出實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是圓O:x2+y2=16上的任意一點,l是過點A且與x軸垂直的直線,B是直線l與x軸的交點,點Q在直線l上,且滿足4|BQ|=3|BA|.當點A在圓O上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)已知直線y=kx﹣2(k≠0)與曲線C交于M,N兩點,點M關于y軸的對稱點為M′,設P(0,﹣2),證明:直線M′N過定點,并求△PM′N面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列前
項和為
,且滿足
,
.
(1)求數列的通項公式;
(2)令,
為
的前
項和,求證:
.
(3)在(2)的條件下,若數列的前n項和為
,
,求證
(4)請你說明第(3)問所用到的求和方法,哪些數列通項的模型適合此方法?請舉例說明.(至少列舉出三種)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形
是梯形,
∥
,
,平面
平面
,且
.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)已知點在棱
上,且異面直線
與
所成角的余弦值為
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中:
底面ABCD,底面ABCD為梯形,
,
,且
,BC=1,M為棱PD上的點。
(Ⅰ)若,求證:CM∥平面PAB;
(Ⅱ)求證:平面平面PAB;
(Ⅲ)求直線BD與平面PAD所成角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com