【題目】已知具有相關關系的兩個變量之間的幾組數據如下表所示:
(1)請根據上表數據在網格紙中繪制散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
,并估計當
時,
的值;
(3)將表格中的數據看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.
參考公式: ,
.
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個班級進行數學考試,按照大于或等于90分為優秀,90分以下為非優秀統計成績后,得到如表的列聯表.
優秀 | 非優秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 100 |
已知在全部100人中抽到隨機抽取1人為優秀的概率為 .
(1)請完成如表的列聯表;
(2)根據列聯表的數據,有多大的把握認為“成績與班級有關系“?
(3)按分層抽樣的方法,從優秀學生中抽出6名組成一個樣本,再從樣本中抽出2名學生,求恰好有1個學生在甲班的概率.
參考公式和數據:K2= ,其中n=a+b+c+d.
下面的臨界值表供參考:
p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是遞增的等差數列,前n項和為Sn , a1=1,且a1 , a2 , S3成等比數列.
(1)求an及Sn;
(2)求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】規定投擲飛鏢3次為一輪,若3次中至少兩次投中8環以上為優秀,現采用隨機模擬實驗的方法估計某人投擲飛鏢的情況:先由計算器產生隨機數0或1,用0表示該次投標未在8環以上,用1表示該次投標在8環以上;再以每三個隨機數作為一組,代表一輪的結果,經隨機模擬實驗產生了如下20組隨機數:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
據此估計,該選手投擲飛鏢三輪,至少有一輪可以拿到優秀的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一生物科研小組對升高溫度的多少與某種細菌種群存活數量之間的關系進行分析研究,他們制作5 份相同的樣本并編號1、2、3、4、5,分別記錄它們同在下升高不同的溫度后的種群存活數量, 得到如下資料:
(1)若隨機選取2份樣本的數據來研究,求其編號不相鄰的概率;
(2)求出關于
的線性回歸方程;
(3)利用(2)中所求出的回歸方程預測溫度升高15 時此種樣本中種菌群存活數量.
附: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x3﹣
(a∈R).
(1)若a=1,求函數f(x)在[0,2]上的最大值;
(2)若對任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了解某地區電視觀眾對里約奧運會的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:
將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”。已知“體育迷”中有10名女性。
(1)試求“體育迷”中的男性觀眾人數;
(2)據此資料完成列聯表,你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
臨界值表供參考參考公式:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com