【題目】已知f(x)=lnx-x+a+1.
(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范圍;
(2)求證:在(1)的條件下,當x>1時, x2+ax-a>xlnx+
成立.
【答案】(1) [0,+∞).(2)見解析.
【解析】試題分析(1) 原題即為存在x>0,使得a≥-lnx+x-1,即該不等式有解,求函數g(x)=-lnx+x-1的單調性和最小值即可;(2)原不等式轉化為G(x)=x2+ax-xlnx-a-
>0,研究這個函數的單調性,求得這個函數的最值大于等于0即可.
解析:
(1)解:原題即為存在x>0,
使得lnx-x+a+1≥0,
∴a≥-lnx+x-1,
令g(x)=-lnx+x-1,
則g′(x)=-+1=
.
令g′(x)=0,解得x=1.
∵當0<x<1時,g′(x)<0,g(x)為減函數,
當x>1時,g′(x)>0,g(x)為增函數,
∴g(x)min=g(1)=0,a≥g(1)=0.
故a的取值范圍是[0,+∞).
(2)證明 原不等式可化為x2+ax-xlnx-a-
>0(x>1,a≥0).
令G(x)=x2+ax-xlnx-a-
,則G(1)=0.
由(1)可知x-lnx-1>0,
則G′(x)=x+a-lnx-1≥x-lnx-1>0,
∴G(x)在(1,+∞)上單調遞增,
∴G(x)>G(1)=0成立,
∴x2+ax-xlnx-a-
>0成立,
即x2+ax-a>xlnx+
成立.
科目:高中數學 來源: 題型:
【題目】為減少汽車尾氣排放,提高空氣質量,各地紛紛推出汽車尾號限行措施.為做好此項工作,某市交警支隊對市區各交通樞紐進行調查統計,表中列出了某交通路口單位時間內通過的1000輛汽車的車牌尾號記錄:
由于某些數據缺失,表中以英文字母作標識.請根據圖表提供的信息計算:
(Ⅰ)若采用分層抽樣的方法從這1000輛汽車中抽出20輛,了解駕駛員對尾號限行的建議,應分別從一、二、三、四組中各抽取多少輛?
(Ⅱ)以頻率代替概率,在此路口隨機抽取4輛汽車,獎勵汽車用品.用表示車尾號在第二組的汽車數目,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015 年 12 月,華中地區數城市空氣污染指數“爆表”,此輪污染為 2015 年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;(提示數據:
)
(2)利用(1)所求的回歸方程,預測該市車流量為 12 萬輛時的濃度.
參考公式:回歸直線的方程是,
其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數g(x)=ax+b的圖象大致為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是圓
上任意一點,點
與點
關于原點對稱,線段
的垂直平分線分別與
,
交于
,
兩點.
(1)求點的軌跡
的方程;
(2)過點的動直線
與點
的軌跡
交于
,
兩點,在
軸上是否存在定點
,使以
為直徑的圓恒過這個點?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在[-1,1]上的奇函數,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數f(x)的解析式;并判斷f(x)在[-1,1]上的單調性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com