【題目】設集合是集合
的子集,對于
,定義
,給出下列三個結論:①存在
的兩個不同子集
,使得任意
都滿足
且
;②任取
的兩個不同子集
,對任意
都有
;③任取
的兩個不同子集
,對任意
都有
;其中,所有正確結論的序號是( )
A.①②B.②③C.①③D.①②③
科目:高中數學 來源: 題型:
【題目】如圖,圓與直線
相切于點
,與
正半軸交于點
,與直線
在第一象限的交點為
. 點
為圓
上任一點,且滿足
,以
為坐標的動點
的軌跡記為曲線
.
(1)求圓的方程及曲線
的方程;
(2)若兩條直線和
分別交曲線
于點
和
,求四邊形
面積的最大值,并求此時的
的值.
(3)已知曲線的軌跡為橢圓,研究曲線
的對稱性,并求橢圓
的焦點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列中,若
是正整數,且
,
,則稱
為“D-數列”.
(1) 舉出一個前五項均不為零的“D-數列”(只要求依次寫出該數列的前五項);
(2) 若“D-數列”中,
,
,數列
滿足
,
,寫出數列
的通項公式,并分別判斷當
時,
與
的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);
(3) 證明: 設“D-數列”中的最大項為
,證明:
或
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為實數,函數
.
(1)若函數是偶函數,求實數
的值;
(2)若,求函數
的最小值;
(3)對于函數,在定義域內給定區間
,如果存在
,滿足
,則稱函數
是區間
上的“平均值函數”,
是它的一個“均值點”.如函數
是
上的平均值函數,
就是它的均值點.現有函數
是區間
上的平均值函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某企業每年消耗電費約24萬元,為了節能減排,決定安裝一個可使用15年的太陽能供電設備接入本企業電網,安裝這種供電設備的工本費(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補供電的模式.假設在此模式下,安裝后該企業每年消耗的電費(單位:萬元)與安裝的這種太陽能電池板的面積
(單位:平方米)之間的函數關系是
為常數).記
為該村安裝這種太陽能供電設備的費用與該村15年共將消耗的電費之和.
(1)試解釋的實際意義,并建立
關于
的函數關系式;
(2)當為多少平方米時,
取得最小值?最小值是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|+|x+1|(a∈R),g(x)=|2x﹣1|+2.
(1)若a=1,證明:不等式f(x)≤g(x)對任意的x∈R成立;
(2)若對任意的m∈R,都有t∈R,使得f(m)=g(t)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,求
的單調區間;
(2)若關于的方程
有四個不同的解
,
,
,
,求實數
,
應滿足的條件;
(3)在(2)條件下,若,
,
,
成等比數列,求
用
表示.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,且點
在函數
的圖像上;
(1)求數列的通項公式;
(2)設數列滿足:
,
,求
的通項公式;
(3)在第(2)問的條件下,若對于任意的,不等式
恒成立,求實數
的取值范圍;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com