【題目】已知 f(x)=(x﹣1)ex﹣ax2..
(1)當時,求函數
的單調區間;
(2)若在
處取得極大值,求
的取值范圍.
【答案】(1)減區間,增區間
;(2)
.
【解析】
(1)求出,通過討論其符號可得函數的單調區間.
(2)因為在
處有極大值,從而可知在
的左側附近有
,在
的右側附近有
,從而得到
在
的兩側附近總有
,據此可求出
的取值范圍.
(1) 當時,
,令
,則
,
當時,
;
當時,
,
所以的增區間為
,減區間為
.
(2)由(1)得.
因為在
處有極大值,
故可知在的左側附近有
,
在的右側附近有
,
所以在
的兩側附近有
,所以
即
,
此時當,
,則當x∈(﹣∞,0)時,x<0,ex<1,ex﹣a<0,所以f'(x)>0;
當x∈(0,lna)時,x>0,ex﹣a<elna﹣a=0,所以f'(x)<0.
故為
的極大值點,
若a≤1,則當x∈(0,1)時,x>0,ex﹣a≥ex﹣1>0,
所以f'(x)>0.
所以0不是f(x)的極大值點.
綜上可知,a的取值范圍是(1,+∞).
科目:高中數學 來源: 題型:
【題目】已知函數-2為自然對數的底數,
).
(1)若曲線在點
處的切線與曲線
至多有一個公共點時,求
的取值范圍;
(2)當時,若函數
有兩個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地有種特產水果很受當地老百姓歡迎,但該種水果只能在9月份銷售,且該種水果只能當天食用口感最好,隔天食用口感較差。某超市每年9月份都銷售該特產水果,每天計劃進貨量相同,進貨成本每公斤8元,銷售價每公斤12元;當天未賣出的水果則轉賣給水果罐頭廠,但每公斤只能賣到5元。根據往年銷售經驗,每天需求量與當地氣溫范圍有一定關系。如果氣溫不低于30度,需求量為5000公斤;如果氣溫位于,需求量為3500公斤;如果氣溫低于25度,需求量為2000公斤;為了制定今年9月份訂購計劃,統計了前三年9月份的氣溫范圍數據,得下面的頻數分布表
氣溫范圍 | |||||
天數 | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區間的頻率代替氣溫范圍位于該區間的概率.
(1)求今年9月份這種水果一天需求量(單位:公斤)的分布列和數學期望;
(2)設9月份一天銷售特產水果的利潤為(單位:元),當9月份這種水果一天的進貨量為
(單位:公斤)為多少時,
的數學期望達到最大值,最大值為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海關對同時從A,B,C三個不同地區進口的某種商品進行抽樣檢測,從各地區進口此種商品的數量(單位:件)如表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進行檢測.
地區 | A | B | C |
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A,B,C各地區商品的數量;
(2)若在這6件樣品中隨機抽取2件送往甲機構進行進一步檢測,求這2件商品來自相同地區的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國居民生活水平的不斷提高,汽車逐步進入百姓家庭,但隨之面來的交通擁堵和交通事故時有發生,給人民的生活也帶來了諸多不便.某市為了確保交通安全.決定對交通秩序做進步整頓,對在通路上行駛的前后相鄰兩機動車之間的距離d(米)與機動車行駛速度v(千米/小時)做出如下兩條規定:
①av2;
②.(其中a是常量,表示車身長度,單位:米)
(1)當時.求機動車的最大行駛速度;
(2)設機動車每小時流量Q,問當機動車行駛速度v≥30(千米/小時)時,機動車以什么樣的狀態行駛,能使機動車每小時流量Q最大?并說明理由.(機動車每小時流量Q是指每小時通過觀測點的車輛數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某居民區有一個銀行網點(以下簡稱“網點”),網點開設了若干個服務窗口,每個窗口可以辦理的業務都相同,每工作日開始辦理業務的時間是8點30分,8點30分之前為等待時段.假設每位儲戶在等待時段到網點等待辦理業務的概率都相等,且每位儲戶是否在該時段到網點相互獨立.根據歷史數據,統計了各工作日在等待時段到網點等待辦理業務的儲戶人數,得到如圖所示的頻率分布直方圖:
(1)估計每工作日等待時段到網點等待辦理業務的儲戶人數的平均值;
(2)假設網點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:
①試求每位儲戶在等待時段到網點等待辦理業務的概率;
②儲戶都是按照進入網點的先后順序,在等候人數最少的服務窗口排隊辦理業務.記“每工作日上午8點30分時網點每個服務窗口的排隊人數(包括正在辦理業務的儲戶)都不超過3”為事件,要使事件
的概率不小于0.75,則網點至少需開設多少個服務窗口?
參考數據:;
;
;
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com