(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點A,B
(Ⅰ)求實數k的取值范圍;
(Ⅱ)是否存在實數k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
(Ⅰ)-2<k<
(Ⅱ)k=-時,使得以線段AB為直徑的圓經過的雙曲線C的右焦點。
解析試題分析:(Ⅰ)由
據題意: 解得-2<k<
(Ⅱ)設A,B兩點的坐標分別為(x1,y1),(x2,y2)
則由①式得:
假設存在實數k,使得以線段AB為直徑的圓過雙曲線C的右焦點F(,0),則FA
FB.
∴
·
=0
即:(x1-)(x2-
)+y1y2=0
(x1-)(x2-
)+(kx1+1)(kx2+1)=0
(1+k2)x1 x2+(k-)(x1+ x2)+
=0
∴(1+k2)+(k-
)·
+
=0
∴5k2+2-6=0
∴k=-或k=
(-2,-
)(舍去)
∴k=-時,使得以線段AB為直徑的圓經過的雙曲線C的右焦點。
考點:本題主要考查直線與雙曲線的位置關系。
點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理。存在性問題,往往從假設存在出發,運用題中條件探尋得到存在的是否條件具備。
科目:高中數學 來源: 題型:解答題
如圖,,
是拋物線
(
為正常數)上的兩個動點,直線AB與x軸交于點P,與y軸交于點Q,且
(Ⅰ)求證:直線AB過拋物線C的焦點;
(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心為直角坐標系
的原點,焦點在
軸上,它的一個頂點到兩個焦點的距離分別是7和1
(1)求橢圓的方程
(2)若為橢圓
的動點,
為過
且垂直于
軸的直線上的點,
(e為橢圓C的離心率),求點
的軌跡方程,并說明軌跡是什么曲線?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)過點作直線
與拋物線
相交于兩點
,圓
(1)若拋物線在點處的切線恰好與圓
相切,求直線
的方程;
(2)過點分別作圓
的切線
,
試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
過拋物線焦點垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點F的直線交拋物線于
、
兩點。過
、
作準線的垂線,垂足分別為
、
.
(1)求出拋物線的通徑,證明和
都是定值,并求出這個定值;
(2)證明: .
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
動圓經過定點
,且與直線
相切。
(1)求圓心的軌跡
方程;
(2)直線過定點
與曲線
交于
、
兩點:
①若,求直線
的方程;
②若點始終在以
為直徑的圓內,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓M的中心為坐標原點 ,且焦點在x軸上,若M的一個頂點恰好是拋物線的焦點,M的離心率
,過M的右焦點F作不與坐標軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)如圖橢圓的上頂點為A,左頂點為B, F為右焦點, 過F作平行于AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上。
(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com