【題目】輪船從某港口將一些物品送到正航行的輪船
上,在輪船
出發時,輪船
位于港口
北偏西
且與
相距20海里的
處,并正以30海里的航速沿正東方向勻速行駛,假設輪船
沿直線方向以
海里/小時的航速勻速行駛,經過
小時與輪船
相遇.
(1)若使相遇時輪船航距最短,則輪船
的航行速度大小應為多少?
(2)假設輪船的最高航速只能達到30海里/小時,則輪船
以多大速度及什么航行方向才能在最短時間與輪船
相遇,并說明理由.
【答案】(1)輪船以
海里/小時的速度航行,相遇時輪船
航距最短;(2)航向為北偏東
,航速為30海里/小時,輪船
能在最短時間與輪船
相遇.
【解析】試題分析:(1)設兩輪船在處相遇,在
中,利用余弦定理得出
關于t的函數,從而得出
的最小值及其對應的
,得出速度;
(2)利用余弦定理計算航行時間,得出
距離,從而得出
的度數,得出航行方案.
試題解析:(1)設相遇時輪船航行的距離為
海里,則
.
∴當時,
,
,
即輪船以
海里/小時的速度航行,相遇時輪船
航距最短.
(2)設輪船與輪船
在
處相遇,則
,
即.
∵,
∴,即
,解得
,又
時
,
∴時,
最小且為
,此時
中
,
∴航向為北偏東,航速為30海里/小時,
輪船能在最短時間與輪船
相遇.
科目:高中數學 來源: 題型:
【題目】在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入,已知研發投入 (十萬元)與利潤
(百萬元)之間有如下對應數據:
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由資料知對
呈線性相關關系。試求:
(1)線性回歸方程;
(2)估計時,利潤是多少?
附:利用“最小二乘法”計算a,b的值時,可根據以下公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一汽車廠生產A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月產量如表(單位:輛):
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標準型 | 300 | 450 | 600 |
按類型分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有A類轎車10輛。
(1)求z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本。將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各組函數中,表示同一函數的是( )
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( )2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設偶函數f(x)滿足f(x)=x3﹣8(x≥0),則{x|f(x﹣2)>0}=( )
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區間[1,2]為單調增函數,求a的取值范圍;
(2)設函數f(x)在區間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設函數 ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com