精英家教網 > 高中數學 > 題目詳情

已知函數
(1)若,求函數的極小值;
(2)設函數,試問:在定義域內是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

(1)極小值為2;(2)不存在,詳見解析.

解析試題分析:(1)由a=4,得函數f(x)的解析式,求出其導函數以及導數為0的根,通過比較兩根的大小找到函數的單調區間,進而求出f(x)的極小值;(2)若定義域內存在三個不同的自變量的取值xi(i=1,2,3),使得f(xi)-g(xi)的值恰好都相等,設f(xi)-g(xi)=m.(i=1,2,3),則對于某一實數m,方程f(x)-g(x)=m在(0,+∞)上有三個不等的實數,由此能求出在定義域內不存在三個不同的自變量的取值xi(i=1,2,3)使得f(xi)-g(xi)的值恰好都相等.
解:(1)定義域為,由已知得,   2分
則當,上是減函數,
,上是增函數, 
故函數的極小值為.                6分
(2)若存在,設
則對于某一實數方程上有三個不等的實根,
,
則函數的圖象與x軸有三個不同交點,
有兩個不同的零點.9分
顯然上至多只有一個零點
則函數的圖象與x軸至多有兩個不同交點,則這樣的不存在。       13分
考點:1.函數在某點取得極值的條件;2.根的存在性及根的個數判斷.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

水庫的蓄水量隨時間而變化,現用表示時間,以月為單位,年初為起點,根據歷年數據,某水庫的蓄水量(單位:億立方米)關于的近似函數關系式為

(1)該水庫的蓄求量小于50的時期稱為枯水期.以表示第1月份(),同一年內哪幾個月份是枯水期?
(2)求一年內該水庫的最大蓄水量(取計算).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求f(x)的反函數的圖象上圖象上,點(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點.
(3)設a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中
(1) 當時,求曲線在點處的切線方程;
(2) 求函數的單調區間及在上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是函數的兩個極值點,其中.
(1)求的取值范圍;
(2)若為自然對數的底數),求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線
(1)試求曲線在點處的切線方程;
(2)試求與直線平行的曲線C的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)若函數的圖像與直線恰有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時取得極小值.
(1)求實數的值;
(2)是否存在區間,使得在該區間上的值域為?若存在,求出,的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數在點(1,1)處的切線方程;
(2)若在y軸的左側,函數的圖象恒在的導函數圖象的上方,求k的取值范圍;
(3)當k≤-l時,求函數在[k,l]上的最小值m。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视