【題目】(1)求圓心在直線上,且與直線
相切于點
的圓的方程;
(2)求與圓外切于點
且半徑為
的圓的方程.
【答案】(1);(2)
.
【解析】試題分析:
(1)由題意可得圓的一條直徑所在的直線方程為,據此可得圓心
,半徑
,則所求圓的方程為
.
(2)圓的標準方程為,得該圓圓心為
,半徑為
,兩圓連心線斜率
.設所求圓心為
,結合弦長公式可得
,
.則圓的方程為
.
試題解析:
(1)過點且與直線
垂直的直線為
,
由
.
即圓心,半徑
,
所求圓的方程為.
(2)圓方程化為,得該圓圓心為
,半徑為
,故兩圓連心線斜率
.設所求圓心為
,
,∴
,
,∴
.
∴.
點睛:求圓的方程,主要有兩種方法:
(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.
(2)待定系數法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數,所以應該有三個獨立等式.
【題型】解答題
【結束】
20
【題目】如圖所示,平面
,點
在以
為直徑的
上,
,
,點
為線段
的中點,點
在弧
上,且
.
(1)求證:平面平面
;
(2)求證:平面平面
;
(3)設二面角的大小為
,求
的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】試題分析:
(1)由△ABC中位線的性質可得,則
平面
.由線面平行的判斷定理可得
平面
.結合面面平行的判斷定理可得
平面
.
(2)由圓的性質可得,由線面垂直的性質可得
,據此可知
平面
.利用面面垂直的判斷定理可得平面
平面
.
(3)以為坐標原點,
所在的直線為
軸,
所在的直線為
軸,建立空間直角坐標系
.結合空間幾何關系計算可得平面
的法向量
,平面
的一個法向量
,則
.由圖可知
為銳角,故
.
試題解析:
(1)證明:因為點為線段
的中點,點
為線段
的中點,
所以,因為
平面
,
平面
,所以
平面
.
因為,且
平面
,
平面
,所以
平面
.
因為平面
,
平面
,
,
所以平面平面
.
(2)證明:因為點在以
為直徑的
上,所以
,即
.
因為平面
,
平面
,所以
.
因為平面
,
平面
,
,所以
平面
.
因為平面
,所以平面
平面
.
(3)解:如圖,以為坐標原點,
所在的直線為
軸,
所在的直線為
軸,建立空間直角坐標系
.
因為,
,所以
,
.
延長交
于點
.因為
,
所以,
,
.
所以,
,
,
.
所以,
.
設平面的法向量
.
因為,所以
,即
.
令,則
,
.
所以.
同理可求平面的一個法向量
.
所以.由圖可知
為銳角,所以
.
科目:高中數學 來源: 題型:
【題目】某旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.規定:每輛自行車的日租金不超過20元,每輛自行車的日租金元只取整數,并要求出租所有自行車一日的總收入必須超過一日的管理費用,用
表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費用后的所得).
(1)求函數的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,橫、縱坐標均為整數的點叫做格點,若函數的圖象恰好經過
個格點,則稱函數
為
階格點函數.下列函數中為一階格點函數的是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓.由直線
上離圓心最近的點
向圓
引切線,切點為
,則線段
的長為__________.
【答案】
【解析】圓心到直線
的距離:
,
結合幾何關系可得線段的長度為
.
【題型】填空題
【結束】
16
【題目】設是兩個非零平面向量,則有:
①若,則
②若,則
③若,則存在實數
,使得
④若存在實數,使得
,則
或
四個命題中真命題的序號為 __________.(填寫所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是平行四邊形
所在平面外一點,如果
,
,
.(1)求證:
是平面
的法向量;
(2)求平行四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)由題意結合空間向量數量積的運算法則計算可得,
.則
,
,結合線面垂直的判斷定理可得
平面
,即
是平面
的法向量.
(2)利用平面向量的坐標計算可得,
,
,則
,
,
.
試題解析:
(1)∵,
.
∴,
,又
,∴
平面
,
∴是平面
的法向量.
(2)∵
,
,
∴,
∴,
故,
.
【題型】解答題
【結束】
19
【題目】(1)求圓心在直線上,且與直線
相切于點
的圓的方程;
(2)求與圓外切于點
且半徑為
的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形
繞底邊
上的高所在直線
旋轉180°而成,如圖2.已知圓
的半徑為
,設
,圓錐的側面積為
.
(1)求關于
的函數關系式;
(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求
取得最大值時腰
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠擬生產甲、乙兩種適銷產品,每件銷售收入分別為3000元,2000元.甲、乙產品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2
,加工一件乙設備所需工時分別為2
,1
.A、B兩種設備每月有效使用臺時數分別為400
和500
,分別用
表示計劃每月生產甲,乙產品的件數.
(Ⅰ)用列出滿足生產條件的數學關系式,并畫出相應的平面區域;
(Ⅱ)問分別生產甲、乙兩種產品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com