精英家教網 > 高中數學 > 題目詳情

已知函數
(1)求上的最大值;
(2)若直線為曲線的切線,求實數的值;
(3)當時,設,且,若不等式恒成立,求實數的最小值.

(1)(2).   (3)的最小值為

解析試題分析:
(1)利用導數可以求解函數單調性得到極值與最值,但是函數含有參數,故而需要討論,首先對函數求定義域,求導可以發現導函數的分母恒大于0不影響導函數符號,故考慮分子大于0,小于0的解集,討論a的范圍得到區間的單調性,分析就可以得到原函數在固定區間上的最值.
(2)設出切點坐標,利用切點滿足的三個條件(①切點在原函數上,坐標滿足原函數方程 ②切點在切線上,坐標滿足切線方程 ③原函數在切點處的導數為切線的斜率)建立關于a的方程,解方程求出a的值.
(3)由(2)的結論得到此時直線為曲線的切線,且分析原函數與切線的圖像可以發現曲線在直線下方,即可以發現在區間上不等式恒成立,作差即可嚴格證明該不等式是成立的.利用該不等式對放縮為可求和的式子,進而求的的最值,得到的取值范圍與最值.
試題解析:
(1),              2分
,解得(負值舍去),
,解得
(ⅰ)當時,由,得
上的最大值為.              3分
(ⅱ)當時,由,得,
上的最大值為.             4分
(ⅲ)當時,時,,在時,,
上的最大值為.         5分
(2)設切點為,則             6分
,有,化簡得,
, ①
,有,②
由①、②解得.                 9分
(3)當時,,
由(2)的結論直線為曲線的切線,
,在直線上,
根據圖像分析,曲線在直線下方.         10分
下面給出證明:當時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

請你設計一個包裝盒,如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,CD四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E,FAB上,是被切去的一個等腰直角三角形,斜邊的兩個端點,設AEFBx(cm).

①某廣告商要求包裝盒的側面積S(cm2)最大,試問x應取何值?
②某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.對于任意實數x恒有
(1)求實數的最大值;
(2)當最大時,函數有三個零點,求實數k的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在單調遞增區間,求a的取值范圍.
(2)當0<a<2時,f(x)在[1,4]上的最小值為-,求f(x)在該區間上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知 (其中是自然對數的底)
(1) 若處取得極值,求的值;
(2) 若存在極值,求a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的單調區間,并證明對[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個單位,同時將y=g(x)的圖像向上平移b(b>0)個單位,使它們恰有四個交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數;
(1)若>0,試判斷f(x)在定義域內的單調性;
(2)若f(x)在[1,e]上的最小值為,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,圖象與軸異于原點的交點M處的切線為,軸的交點N處的切線為, 并且平行.
(1)求的值;
(2)已知實數t∈R,求的取值范圍及函數的最小值;
(3)令,給定,對于兩個大于1的正數,存在實數滿足:,,并且使得不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式y+10(x-6)2,其中3<x<6,a為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>
久久精品免费一区二区视