精英家教網 > 高中數學 > 題目詳情

設f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的單調區間,并證明對[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個單位,同時將y=g(x)的圖像向上平移b(b>0)個單位,使它們恰有四個交點,求的取值范圍.

(1)在(-∞,-1)和(0,1)上單調遞增,在(-1,0)和(1,+∞)上單調遞減,證明見解析(2)<<1+ln 2

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知ab為常數,且a≠0,函數f(x)=-axb
axln x,f(e)=2.
①求b;②求函數f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln x-1.
(1)求函數f(x)的單調區間;
(2)設m∈R,對任意的a∈(-1,1),總存在x0∈[1,e],使得不等式maf(x0)<0成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設命題P:函數在區間[-1,1]上單調遞減;
命題q:函數的定義域為R.若命題p或q為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求上的最大值;
(2)若直線為曲線的切線,求實數的值;
(3)當時,設,且,若不等式恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商品每件成本5元,售價14元,每星期賣出75件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數與商品單價的降低值(單位:元,)的平方成正比,已知商品單價降低1元時,一星期多賣出5件.
(1)將一星期的商品銷售利潤表示成的函數;
(2)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3ax2+bx.
(1)若a=2b,試問函數f(x)能否在x=-1處取到極值?若有可能,求出實數a,b的值;否則說明理由.
(2)若函數f(x)在區間(-1,2),(2,3)內各有一個極值點,試求w=a-4b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=lnx-ax,g(x)=ex-ax,其中a為實數.
(1)若f(x)在(1,+∞)上是單調減函數,且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(-1,+∞)上是單調增函數,試求f(x)的零點個數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的導函數為,的圖象在點,處的切線方程為,且,直線是函數的圖象的一條切線.
(1)求函數的解析式及的值;
(2)若對于任意,恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视