【題目】如圖,四棱錐的底面
是邊長為2的正方形,
平面
,
,
分別是棱
,
的中點.
(1)求證:平面
;
(2)若,求平面
將三棱錐
分成的兩部分的體積中較大部分的體積.
科目:高中數學 來源: 題型:
【題目】某家政公司對部分員工的服務進行民意調查,調查按各項服務標準進行量化評分,嬰幼兒保姆部對40~50歲和20~30歲各20名女保姆的調查結果如下:
分數 年齡 | |||||
40~50歲 | 0 | 2 | 4 | 7 | 7 |
20~30歲 | 3 | 5 | 5 | 5 | 2 |
(1)若規定評分不低于80分為優秀保姆,試分別估計這兩個年齡段保姆的優秀率;
(2)按照大于或等于80分為優秀保姆,80分以下為非優秀保姆統計.作出列聯表,并判斷能否有
的把握認為對保姆工作質量的評價是否優秀與年齡有關.
(3)從所有成績在70分以上的人中按年齡利用分層抽樣抽取10名保姆,再從這10人中選取3人給大家作經驗報告,設抽到40~50歲的保姆的人數為,求出
的分布列與期望值.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,極點為,一條封閉的曲線
由四段曲線組成:
,
,
,
.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:
與曲線
恰有3個公共點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,左右頂點分別為
,
,右焦點為
,
為橢圓上異于
,
的動點,且
面積的最大值為
.
(1)求橢圓的方程;
(2)設直線與
軸交于
點,過點
作
的平行線交
軸與點
,試探究是否存在定點
,使得以
為直徑的圓恒過定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且四個頂點構成的四邊形的面積是
.
(1)求橢圓的方程;
(2)已知直線經過點
,且不垂直于
軸,直線
與橢圓
交于
,
兩點,
為
的中點,直線
與橢圓
交于
,
兩點(
是坐標原點),求四邊形
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年1月底因新型冠狀病毒感染的肺炎疫情形勢嚴峻,避免外出是減少相互交叉感染最有效的方式.在家中適當鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區為了調查“宅”家居民的運動情況,從該小區隨機抽取了100位成年人,記錄了他們某天的鍛煉時間,其頻率分布直方圖如下:
(1)求a的值,并估計這100位居民鍛煉時間的平均值(同一組中的數據用該組區間的中點值代表);
(2)小張是該小區的一位居民,他記錄了自己“宅”家7天的鍛煉時長:
序號n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
鍛煉時長m(單位:分鐘) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根據數據求m關于n的線性回歸方程;
(Ⅱ)若(
是(1)中的平均值),則當天被稱為“有效運動日”.估計小張“宅”家第8天是否是“有效運動日”?
附;在線性回歸方程中,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
為
的中點,將
沿直線
翻折成
,連結
,
為
的中點,則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得;
②翻折過程中,的長是定值;
③若,則
;
④若,當三棱錐
的體積最大時,三棱錐
的外接球的表面積是
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com