【題目】設函數f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.
【答案】
(1)證明:∵a>0,f(x)=|x+ |+|x﹣a|≥|(x+
)﹣(x﹣a)|=|a+
|=a+
≥2
=2,
故不等式f(x)≥2成立.
(2)解:∵f(3)=|3+ |+|3﹣a|<5,
∴當a>3時,不等式即a+ <5,即a2﹣5a+1<0,解得3<a<
.
當0<a≤3時,不等式即 6﹣a+ <5,即 a2﹣a﹣1>0,求得
<a≤3.
綜上可得,a的取值范圍( ,
).
【解析】(1)由a>0,f(x)=|x+ |+|x﹣a|,利用絕對值三角不等式、基本不等式證得f(x)≥2成立.(2)由f(3)=|3+
|+|3﹣a|<5,分當a>3時和當0<a≤3時兩種情況,分別去掉絕對值,求得不等式的解集,再取并集,即得所求.
【考點精析】根據題目的已知條件,利用絕對值不等式的解法的相關知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , 且a2=3,S6=36.
(1)求數列{an}的通項公式;
(2)令bn= ,求數列{an}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: +
=1(a>b>0)過點
,且離心率e為
.
(1)求橢圓E的方程;
(2)設直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正方形的四個頂點A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分別在拋物線y=﹣x2和y=x2上,如圖所示,若將一個質點隨機投入正方形ABCD中,則質點落在圖中陰影區域的概率是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (k為常數,e=2.71828…是自然對數的底數),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調區間;
(3)設g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導函數.證明:對任意x>0,g(x)<1+e﹣2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E是棱DD1的中點.
(1)求直線BE與平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一點F,使B1F∥平面A1BE?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:=1(a>b>0)的離心率e=
,點P(-
,1)在該橢圓上.
(1)求橢圓C的方程;
(2)若點A,B是橢圓C上關于直線y=kx+1對稱的兩點,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an=3n﹣2,f(n)= +
+…+
,g(n)=f(n2)﹣f(n﹣1),n∈N* .
(1)求證:g(2)> ;
(2)求證:當n≥3時,g(n)> .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某社區居民有無收看“奧運會開幕式”,某記者分別從某社區60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進行調查,若在60~70歲這個年齡段中抽查了8人,那么x為( ) .
A. 90 B. 120 C. 180 D. 200
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com