【題目】選修4-5 不等式選講
已知函數.
(1)若不等式的解集為
,求實數
的值;
(2)在(1)的條件下,若,使得
,求實數
的取值范圍.
【答案】(1)3(2)
【解析】試題分析:(1)由不等式,求得
.再根據不等式
的解集為
可得
,且
,由此求得
的值.
(2)由題意可得 的最小值小于
,求出
的范圍即可.
試題解析:(1)不等式f(x)≤4,即|x﹣a|≤4,即﹣4≤x﹣a≤4,求得 a﹣4≤x≤a+4.
再根據不等式f(x)≤4的解集為{x|﹣1≤x≤7},可得a﹣4=﹣1,且a+4=7,求得 a=3.
(2)在(1)的條件下,若f(x)+f(x+5)<4m成立,即|x﹣3|+|x+2|<4m成立,
故(|x﹣3|+|x+2|)min<4m,
而|x﹣3|+|x+2|≥|(x﹣3)+(﹣x﹣2)|=5,
∴4m>5,解得:m>,
即m的范圍為(,+∞).
科目:高中數學 來源: 題型:
【題目】在某次測量中得到的A樣本數據如下:82,84,84,86,86,86,88,88,88,88.若B樣本數據恰好是A樣本數據都加2后所得數據,則A,B兩樣本的下列數字特征對應相同的是( )
A.眾數
B.平均數
C.中位數
D.標準差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結論:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC.中恒成立的為( )
A.①③
B.③④
C.①②
D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ex﹣ax﹣2.
(1)求f(x)的單調區間;
(2)若a=1,k為整數,且當x>0時,(x﹣k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市隨機抽取一年內100 天的空氣質量指數(AQI)的監測數據,結果統計如表:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質量 | 優 | 良 | 輕度污染 | 輕度污染 | 中度污染 | 重度污染 |
天數 | 6 | 14 | 18 | 27 | 20 | 15 |
(1)若本次抽取的樣本數據有30 天是在供暖季,其中有8 天為嚴重污染.根據提
供的統計數據,完成下面的2×2 列聯表,并判斷是否有95%的把握認為“該城市本年的
空氣嚴重污染與供暖有關”?
非重度污染 | 嚴重污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
(2)已知某企業每天的經濟損失y(單位:元)與空氣質量指數x 的關系式為y= 試估計該企業一個月(按30 天計算)的經濟損失的數學期望.
參考公式:K2=
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a2=b(b+c).
(1)求證:∠A=2∠B;
(2)若a= b,判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com