【題目】已知函數f(x)=xlnx.
(1)求f(x)的單調區間和極值;
(2)若對任意 恒成立,求實數m的最大值.
【答案】
(1)解:∵f(x)=xlnx,
∴f'(x)=lnx+1,
∴f'(x)>0有 ,∴函數f(x)在
上遞增,f'(x)<0有
,
∴函數f(x)在 上遞減,
∴f(x)在 處取得極小值,極小值為
(2)解:∵2f(x)≥﹣x2+mx﹣3
即mx≤2xlnx+x2+3,又x>0,
∴ ,
令 ,
令h'(x)=0,解得x=1或x=﹣3(舍)
當x∈(0,1)時,h'(x)<0,函數h(x)在(0,1)上遞減
當x∈(1,+∞)時,h'(x)>0,函數h(x)在(1,+∞)上遞增,
∴h(x)min=h(1)=4.
∴m≤4,
即m的最大值為4.
【解析】(1)求函數的導數,利用函數單調性和極值之間的關系即可求f(x)的單調區間和極值;(2)利用不等式恒成立,進行參數分離,利用導數即可求出實數m的最大值.
【考點精析】根據題目的已知條件,利用利用導數研究函數的單調性的相關知識可以得到問題的答案,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點E,F分別為AB和PD中點. (Ⅰ)求證:直線AF∥平面PEC;
(Ⅱ)求PC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩個研發小組,他們研發新產品成功的概率分別為 和
.現安排甲組研發新產品A,乙組研發新產品B,設甲、乙兩組的研發相互獨立. (Ⅰ)求至少有一種新產品研發成功的概率;
(Ⅱ)若新產品A研發成功,預計企業可獲利潤120萬元;若新產品B研發成功,預計企業可獲利潤100萬元,求該企業可獲利潤的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=6cos2 +
sinωx﹣3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣
,
),求f(x0+1)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中常數
.
(1)當時,求函數
的單調遞增區間;
(2)當時,若函數
有三個不同的零點,求
的取值范圍;
(3)設定義在上的函數
在點
處的切線方程為
,當
時,若
在
內恒成立,則稱
為函數
的“類對稱點”,請你探究當
時,函數
是否存在“類對稱點”,若存在,請最少求出一個“類對稱點” 的橫坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com