精英家教網 > 高中數學 > 題目詳情

【題目】已知定義在上的偶函數滿足,且當時, ,若在內關于的方程恰有3個不同的實數根,則的取值范圍是 ( )

A. B. C. D.

【答案】C

【解析】,

,即,

∴ 函數f(x)的周期為4。

x[0,2],x[2,0]

,

f(x)是偶函數,

f(x)loga(x+2)=0,f(x)=loga(x+2),

作出函數的圖象如圖所示

①當0<a<1,函數g(x)=loga(x+2)單調遞減此時兩函數的圖象只有1個交點,不滿足條件;

a>1,要使方程f(x)loga(x+2)=0恰有3個不同的實數根,則需函數f(x)g(x)=loga(x+2)的圖象有3個不同的交點,

則需滿足,解得。

a的取值范圍是

答案:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】, .

1)令,求的單調區間;

2)已知處取得極大值,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:

(1)已知某人一天的走路步數超過8000步被系統評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數的頻率分布來估計其所有微信好友每日走路步數的概率分布,現從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=x3+ax2+bx+1的導數f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數a,b∈R. (Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設g(x)=f′(x)ex . 求函數g(x)的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx.
(1)求f(x)的單調區間和極值;
(2)若對任意 恒成立,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足對任意的都有,且

(1)求數列的通項公式;

(2)設數列的前項和為,不等式對任意的正整數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某城市有一塊半徑為40m的半圓形O為圓心,AB為直徑綠化區域,現計劃對其進行改建.在AB的延長線上取點D,使OD=80m,在半圓上選定一點C,改建后的綠化區域由扇形區域AOC和三角形區域COD組成,其面積為S m2. 設∠AOC=x rad.

(1)寫出S關于x的函數關系式S(x),并指出x的取值范圍;

(2)張強同學說:當∠AOC=時,改建后的綠化區域面積S最大.張強同學的說法正確嗎?若不正確,請求出改建后的綠化區域面積S最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】先閱讀下列結論的證法,再解決后面的問題:已知a1 , a2∈R,a1+a2=1,求證a12+a22
【證明】構造函數f(x)=(x﹣a12+(x﹣a22
則f(x)=2x2﹣2(a1+a2x+a12+a22
=2x2﹣2x+a12+a22
因為對一切x∈R,恒有f(x)≥0.
所以△=4﹣8(a12+a22)≤0,從而得a12+a22
(1)若a1 , a2 , …,an∈R,a1+a2+…+an=1,請寫出上述結論的推廣式;
(2)參考上述解法,對你推廣的結論加以證明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视