精英家教網 > 高中數學 > 題目詳情

【題目】已知是定義在R上的奇函數,當時,其中

(1)求的解析式;

(2)解關于的不等式,結果用集合或區間表示

【答案】(1);(2)見解析

【解析】

(1)首先利用奇函數的性質求解時函數的解析式,然后將函數的解析式寫成分段函數的形式即可;

(2)由題意結合函數的奇偶性和函數的單調性分類討論兩種情況求解不等式的解集即可.

(1)x<0時,-x>0,f(-x)=ax-1.

f(x)是奇函數,有f(-x)=-f(x),

f(-x)=ax-1,

f(x)=-ax+1(x<0).

∴所求的解析式為.

(2)不等式等價于

.

a>1時,有,

可得此時不等式的解集為.

同理可得,當0<a<1時,不等式的解集為R.

綜上所述,當a>1時,不等式的解集為;

0<a<1時,不等式的解集為R.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業常年生產一種出口產品,根據預測可知,進入21世紀以來,該產品的產量平穩增長.記2009年為第1年,且前4年中,第x年與年產量f(x) 萬件之間的關系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三種函數模型之一:f(x)=axb,f(x)=2xa,f(x)=logxa.

(1)找出你認為最適合的函數模型,并說明理由,然后選取其中你認為最適合的數據求出相應的解析式;

(2)因遭受某國對該產品進行反傾銷的影響,2015年的年產量比預計減少30%,試根據所建立的函數模型,確定2015年的年產量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在上的函數的圖像經過點,且在區間單調遞減,又知函數為偶函數,則關于的不等式的解為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代秦九韶算法可計算多項式anxn+an1xn1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當x=1時,當多項式為x4+4x3+6x2+4x+1的值為(

A.5
B.16
C.15
D.11

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為 ,此時四面體ABCD的外接球的表面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐S﹣ABCD中,底面ABCD為平行四邊形,側面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2 ,SB=SC=

(1)設平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC;
(3)求直線SD與面SAB所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx。

(1)求曲線y=f(x)在點(1,f(1))處的切線方程;

(2)求證:當x>0時,f(x)≥l-;

(3)若x-1>alnx對任意x>1恒成立,求實數a的最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)判斷并證明函數的奇偶性;

(2)判斷當時函數的單調性,并用定義證明;

(3)若定義域為,解不等式.

【答案】(1)奇函數(2)增函數(3)

【解析】試題分析:1)判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。2)利函數單調性定義證明單調性,按假設,作差,化簡,判斷,下結論五個步驟。(3)由(1)(2)奇函數在(-1,1)為單調函數,

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數的單調性及定義(-1,1)求解得x范圍。

試題解析:1)函數為奇函數.證明如下:

定義域為

為奇函數

2)函數在(-1,1)為單調函數.證明如下:

任取,則

,

在(-1,1)上為增函數

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點睛

(1)奇偶性:判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。

(2)單調性:利函數單調性定義證明單調性,按假設,作差,化簡,定號,下結論五個步驟。

型】解答
束】
22

【題目】已知函數.

(1)若的定義域和值域均是,求實數的值;

(2)若在區間上是減函數,且對任意的,都有,求實數的取值范圍;

(3)若,且對任意的,都存在,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列關系式中正確的是(  )

A. sin11°cos10°sin168° B. sin168°sin11°cos10°

C. sin11°sin168°cos10° D. sin168°cos10°sin11°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视