精英家教網 > 高中數學 > 題目詳情

【題目】在(0,1)之間隨機取兩個數,則的概率為 ( )

A. B. C. D.

【答案】A

【解析】

由已知可得x、y滿足的區域為的邊長為1得正方形內部,而表示正方形內部且在直線x+y下方的部分,計算兩部分面積,由幾何概型公式計算即可.

由題意得滿足條件的點(xy)所在的區域為橫縱坐標都在(0,1)之間的正方形內部,即如圖的正方形OABC的內部,其面積為S=1×1=1,

若兩數之和小于,即x+y,對應的區域為直線x+y下方,且在正方形OABC內部,即如圖的陰影部分.

∵直線x+y分別交BC、AB于點D,1)、E(1,),

SBDE

因此,陰影部分面積為S'=SABCDSBDE=1-

由此可得:兩數之和小于概率為P

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】拋物線y2=4x的內接三角形的一個頂點在原點,三邊上的高線都通過拋物線的焦點,求此三角形外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經國務院批復同意,鄭州成功入圍國家中心城市,某校學生團針對“鄭州的發展環境”對20名學生進行問卷調查打分(滿分100分),得到如圖1所示莖葉圖.
(Ⅰ)分別計算男生女生打分的平均分,并用數學特征評價男女生打分的數據分布情況;
(Ⅱ)如圖2按照打分區間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,平面α⊥平面β,α∩β=直線l,A,C是α內不同的兩點,B,D是β內不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是(
A.當|CD|=2|AB|時,M,N兩點不可能重合
B.M,N兩點可能重合,但此時直線AC與直線l不可能相交
C.當AB與CD相交,直線AC平行于l時,直線BD可以與l相交
D.當AB,CD是異面直線時,MN可能與l平行

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣(a+2)x+alnx,其中常數a>0. (Ⅰ)當a>2時,求函數f(x)的單調遞增區間;
(Ⅱ)設定義在D上的函數y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內恒成立,則稱P為函數y=h(x)的“類對稱點”.當a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點分別是F1 , F2 , 過F2的直線交雙曲線的右支于P,Q兩點,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=aex﹣blnx,曲線y=f(x)在點(1,f(1))處的切線方程為
(1)求a,b;
(2)證明:f(x)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 . (Ⅰ)求f(x)的定義域;
(Ⅱ)設β是銳角,且 ,求β的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视