精英家教網 > 高中數學 > 題目詳情

【題目】經國務院批復同意,鄭州成功入圍國家中心城市,某校學生團針對“鄭州的發展環境”對20名學生進行問卷調查打分(滿分100分),得到如圖1所示莖葉圖.
(Ⅰ)分別計算男生女生打分的平均分,并用數學特征評價男女生打分的數據分布情況;
(Ⅱ)如圖2按照打分區間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學中抽取3人,求有女生被抽中的概率.

【答案】解:(Ⅰ)女生打分的平均分為:

= (68+69+75+76+70+79+78+82+87+96)=78,

男生打分的平均分為:

= (55+53+62+65+71+70+73+74+86+81)=69.

從莖葉圖來看,女生打分相對集中,男生打分相對分散.

(Ⅱ)20名學生中,打分區間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的學生數分別為:

2人,4人,9人,4人,1人,

打分區間[70,80)的人數最多,有9人,所點頻率為: =0.45,

∴最高矩形的高h= =0.045.

(Ⅲ)打分在70分以下(不含70分)的同學有6人,其中男生4人,女生2人,

從中抽取3人,基本事件總數n= =20,

有女生被抽中的對立事件是抽中的3名同學都是男生,

∴有女生被抽中的概率p=1﹣ =1﹣ =


【解析】(Ⅰ)利用莖葉圖能求出女生打分的平均分和男生打分的平均分,從莖葉圖來看,女生打分相對集中,男生打分相對分散.

(Ⅱ)20名學生中,打分區間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的學生數分別為:2人,4人,9人,4人,1人,打分區間[70,80)的人數最多,有9人,所點頻率為0.45,由此能求出最高矩形的高.

(Ⅲ)打分在70分以下(不含70分)的同學有6人,其中男生4人,女生2人,有女生被抽中的對立事件是抽中的3名同學都是男生,由此利用對立事件概率計算公式能求出有女生被抽中的概率.

【考點精析】通過靈活運用頻率分布直方圖和莖葉圖,掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息;莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=aexlnx+ ,曲線y=f(x)在點(1,f(1))處得切線方程為y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地電影院為了了解當地影迷對快要上映的一部電影的票價的看法,進行了一次調研,得到了票價x(單位:元)與渴望觀影人數y(單位:萬人)的結果如下表:

(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;

(2)根據(1)中求出的線性回歸方程,若票價定為70元,預測該電影院渴望觀影人數.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數列{an}及{bn}的通項公式;
(Ⅱ)設數列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2=4,直線l:y=x,則圓C上任取一點A到直線l的距離小于1的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設D為不等式組 ,表示的平面區域,點B(a,b)為第一象限內一點,若對于區域D內的任一點A(x,y)都有 成立,則a+b的最大值等于(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在(0,1)之間隨機取兩個數,則的概率為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2 ,AD= ,M為DC的中點,將△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求證:平面D′AM⊥平面ABCM;
(2)若E為D′B的中點,求二面角E﹣AM﹣D′的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】方程為x2+y2﹣4x﹣2y+4=0.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求l的普通方程與C的極坐標方程;
(2)已知l與C交于P,Q,求|PQ|.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视