精英家教網 > 高中數學 > 題目詳情

【題目】空間四邊形PABC的各邊及對角線長度都相等,D、E、F、G分別是AB、BC、CA、AP的中點,下列四個結論中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.

【答案】①②
【解析】解:∵空間四邊形PABC的各邊及對角線長度都相等,
D、E、F、G分別是AB、BC、CA、AP的中點,
∴BC∥DF,又BC不包含于平面PDF,DF平面PDF,
∴BC∥平面PDF,故①正確;
∵DE⊥BC,AE⊥BC,DE∩AE=E,
∴BC⊥平面PAE,
∵DF∥BC,∴DF⊥平面PAE,故②正確;
∵DG∥PB,GF∥PC,DG∩GF=G,DG,GF平面GDF,
∴平面GDF∥平面PBC,故③正確;
∵BC⊥平面PAE,BC平面ABC,
∴平面PAE⊥平面ABC,故④正確.
所以答案是:①②③④.

【考點精析】利用直線與平面平行的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求的面積的最大值;

(Ⅲ)設直線, 分別與軸交于點 .判斷, 大小關系,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,.

(Ⅰ)若,設,試證明存在唯一零點,并求的最大值;

(Ⅱ)若關于的不等式的解集中有且只有兩個整數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求直線laxyb0經過兩直線l12x2y30l23x5y10交點的充要條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱錐A﹣BCD中,E,F,G,H分別是棱AB,BC,CD,DA的中點,則當AC,BD滿足條件 時,四邊形EFGH為菱形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行下面的程序框圖,如果輸入的t=0.01,則輸出的n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:在數列中,若為常數)則稱為“等方差數列”,下列是對“等方差數列”的有關判斷( )

①若是“等方差數列”,在數列 是等差數列;

是“等方差數列”;

③若是“等方差數列”,則數列為常)也是“等方差數列”;

④若既是“等方差數列”又是等差數列,則該數列是常數數列.

其中正確命題的個數為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2
(1)求函數f(x)的定義域和值域;
(2)求函數f(x)的單調區間.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视