【題目】空間四邊形PABC的各邊及對角線長度都相等,D、E、F、G分別是AB、BC、CA、AP的中點,下列四個結論中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.
【答案】①②
【解析】解:∵空間四邊形PABC的各邊及對角線長度都相等,
D、E、F、G分別是AB、BC、CA、AP的中點,
∴BC∥DF,又BC不包含于平面PDF,DF平面PDF,
∴BC∥平面PDF,故①正確;
∵DE⊥BC,AE⊥BC,DE∩AE=E,
∴BC⊥平面PAE,
∵DF∥BC,∴DF⊥平面PAE,故②正確;
∵DG∥PB,GF∥PC,DG∩GF=G,DG,GF平面GDF,
∴平面GDF∥平面PBC,故③正確;
∵BC⊥平面PAE,BC平面ABC,
∴平面PAE⊥平面ABC,故④正確.
所以答案是:①②③④.
【考點精析】利用直線與平面平行的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率是
,且過點
.直線
與橢圓
相交于
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設直線,
分別與
軸交于點
,
.判斷
,
大小關系,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:在數列中,若
為常數)則稱
為“等方差數列”,下列是對“等方差數列”的有關判斷( )
①若是“等方差數列”,在數列
是等差數列;
②是“等方差數列”;
③若是“等方差數列”,則數列
為常)也是“等方差數列”;
④若既是“等方差數列”又是等差數列,則該數列是常數數列.
其中正確命題的個數為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com