【題目】若點O在內,且滿足
,設
為
的面積,
為
的面積,則
=________.
【答案】
【解析】由,可得:
延長OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,
如圖所示:
∵2+3
+4
=
,
∴,
即O是△DEF的重心,
故△DOE,△EOF,△DOF的面積相等,
不妨令它們的面積均為1,
則△AOB的面積為,△BOC的面積為
,△AOC的面積為
,
故三角形△AOB,△BOC,△AOC的面積之比依次為: :
:
=3:2:4,
.
故答案為: .
點睛:本題考查的知識點是三角形面積公式,三角形重心的性質,平面向量在幾何中的應用,注意重要結論:點O在內,且滿足
,
則三角形△AOB,△BOC,△AOC的面積之比依次為:
.
【題型】填空題
【結束】
16
【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發,繞著點O順時針方向旋轉至OD,在旋轉的過程中,記為
OP所經過的在正方形ABCD內的區域(陰影部分)的面積
,那么對于函數
有以下三個結論:
①;
②任意,都有
;
③任意且
,都有
.
其中正確結論的序號是__________. (把所有正確結論的序號都填上).
科目:高中數學 來源: 題型:
【題目】如圖,P是直線x=4上一動點,以P為圓心的圓Γ經定點B(1,0),直線l是圓Γ在點B處的切線,過A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F兩點.
(1)求證:|EA|+|EB|為定值;
(2)設直線l交直線x=4于點Q,證明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,有2Sn=n2+n+4(n∈+)
(1)求數列的通項公式an;
(2)若bn=,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,有兩個獨立的轉盤()、(
).兩個圖中三個扇形區域的圓心角分別為
、
、
.用這兩個轉盤進行玩游戲,規則是:依次隨機轉動兩個轉盤再隨機停下(指針固定不會動,當指針恰好落在分界線時,則這次結果無效,重新開始),記轉盤(
)指針所對的數為
,轉盤(
)指針所對的數為
,(
、
),求下列概率:
(1);
(2).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的一元二次函數,分別從集合
和
中隨機取一個數
和
得到數對
.
(1)若,
,求函數
在
內是偶函數的概率;
(2)若,
,求函數
有零點的概率;
(3)若,
,求函數
在區間
上是增函數的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.向量 =(a,
b)與
=(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某生態園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+x2 .
(Ⅰ)求函數h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數g(x)=f(x)﹣ax在定義域內為增函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
的半徑為2,圓心在
軸的正半軸上,且與直線
相切.
(1)求圓的方程。
(2)在圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且△
的面積最大?若存在,求出點
的坐標及對應的△
的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com