【題目】設集合由滿足下列兩個條件的數列
構成:①
②存在實數
使得
對任意正整數
都成立.
(1)現在給出只有5項的有限數列試判斷數列
是否為集合
的元素;
(2)設數列的前項和為
且
若對任意正整數
點
均在直線
上,證明:數列
并寫出實數
的取值范圍;
(3)設數列若數列
沒有最大值,求證:數列
一定是單調遞增數列。
【答案】(1)不是;(2),
;(3)證明略
【解析】
(1)由于,可知數列
不滿足條件①.(2)由于點
,
在直線
上,可得
,利用遞推關系可得:
,利用等比數列的前
項和公式可得:
,驗證
,可知:條件①成立.由于
,即可得出條件②及其
,
的范圍.(3)利用反證法證明.
(1)解:,因此數列
不滿足條件①,
數列
.
(2)證明:點
,
在直線
上,
,
當時,
,可得:
,化為
,
n=1時,易知,顯然
數列
是等比數列,首項為1,公比為
.
,
則,
.
條件①成立.
由于,
,
.
(3)證明:(反證法)若數列非單調遞增,則一定存在正整數
,使
成立,
當時,由
,得
,
而,所以
.
顯然在,
,
,
這
項中一定存在一個最大值,不妨記為
,
所以為,這與數列
沒有最大值相矛盾.
所以假設不成立,故命題得證.
科目:高中數學 來源: 題型:
【題目】“柯西不等式”是由數學家柯西在研究數學分析中的“流數”問題時得到的,但從歷史的角度講,該不等式應當稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數學家彼此獨立地在積分學中推而廣之,才將這一不等式推廣到完善的地步,在高中數學選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當且僅當ad=bc(即)時等號成立.該不等式在數學中證明不等式和求函數最值等方面都有廣泛的應用.根據柯西不等式可知函數
的最大值及取得最大值時x的值分別為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠因排污比較嚴重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:
月數 | … | ||||
污染度 | … |
污染度為后,該工廠即停止整治,污染度又開始上升,現用下列三個函數模擬從整治后第一個月開始工廠的污染模式:
,
,
,其中
表示月數,
、
、
分別表示污染度.
(1)問選用哪個函數模擬比較合理,并說明理由;
(2)若以比較合理的模擬函數預測,整治后有多少個月的污染度不超過.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,且點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)過橢圓上異于其頂點的任意一點Q作圓
的兩條切線,切點分別為
不在坐標軸上),若直線
在x軸,y軸上的截距分別為
,證明:
為定值;
(3)若是橢圓
上不同兩點,
軸,圓E過
,且橢圓
上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓,試問:橢圓
是否存在過焦點F的內切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=
PAB=90°,BC=CD=
AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了應對金融危機,決定適當進行裁員,已知這家公司現有職工人(
,且
為10的整數倍),每人每年可創利100千元,據測算,在經營條件不變的前的提下,若裁員人數不超過現有人數的30%,則每裁員1人,留崗員工每人每年就能多創利1千元(即若裁員
人,留崗員工可多創利潤
千元);若裁員人數超過現有人數的30%,則每裁員1人,留崗員工每人每年就能多創利2千元(即若裁員
人,留崗員工可多創利潤
千元),為保證公司的正常運轉,留崗的員工數不得少于現有員工人數的50%,為了保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費.
(1)設公司裁員人數為,寫出公司獲得的經濟效益
(千元)關于
的函數(經濟效益=在職人員創利總額—被裁員工生活費);
(2)為了獲得最大的經濟效益,該公司應裁員多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某環線地鐵按內、外環線同時運行,內、外環線的長均為30千米(忽略內、外環線長度差異).
(1)當9列列車同時在內環線上運行時,要使內環線乘客最長候車時間為10分鐘,求內環線列車的最小平均速度;
(2)新調整的方案要求內環線列車平均速度為25千米/小時,外環線列車平均速度為30千米/小時.現內、外環線共有18列列車全部投入運行,要使內外環線乘客的最長候車時間之差不超過1分鐘,向內、外環線應各投入幾列列車運行?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為
,甲由扇形中心
出發沿
以每秒2米的速度向
快走,同時乙從
出發,沿扇形弧以每秒
米的速度向
慢跑,記
秒時甲、乙兩人所在位置分別為
,
,通過計算
,判斷下列說法是否正確:
(1)當時,函數
取最小值;
(2)函數在區間
上是增函數;
(3)若最小,則
;
(4)在
上至少有兩個零點;
其中正確的判斷序號是______(把你認為正確的判斷序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com