【題目】已知函數f(x)= ,若對任意的a∈(﹣3,+∞),關于x的方程f(x)=kx都有3個不同的根,則k等于( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:∵對任意的a∈(﹣3,+∞),關于x的方程f(x)=kx都有3個不同的根,
∴不妨設a=0,
則x≤0時,f(x)= ,
若0<x≤1,則﹣1<x﹣1≤0,則f(x)=f(x﹣1)+1= ,
若1<x≤2,則0<x﹣1≤1,則f(x)=f(x﹣1)+1= ,
若2<x≤3,則1<x﹣1≤2,則f(x)=f(x﹣1)+1= ,
若3<x≤4,則2<x﹣1≤3,則f(x)=f(x﹣1)+1= ,
…
作出f(x)的圖象如圖:
當k=1時,f(x)與y=x只有一個交點,不滿足條件,
當k=2時,f(x)與y=2x有四個交點,不滿足條件,
當k=3時,f(x)與y=3x有三個交點,滿足條件,
當k=4時,f(x)與y=4x只有兩個交點,不滿足條件,
故k=3,
故選:C.
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE.
(1)證明:平面AEC⊥平面BED.
(2)求直線EC與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
(1)當在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,其前
項和為
.
(1)若對任意的,
,
,
組成公差為4的等差數列,且
,求
;
(2)若數列是公比為
(
)的等比數列,
為常數,
求證:數列為等比數列的充要條件為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數,試判斷
是否為“
類函數”?并說明理由;
(2)設是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線C:y2=2x的準線方程是 , 經過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F為拋物線的焦點,則 = .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知M為△ABC的中線AD的中點,過點M的直線分別交兩邊AB、AC于點P、Q,設 =x
,
,記y=f(x).
(1)求函數y=f(x)的表達式;
(2)設g(x)=x3+3a2x+2a,x∈[0,1].若對任意x1∈[ ,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的參數方程為
,曲線
的極坐標方程為
.
(1)寫出直線的直角坐標方程和曲線
的普通方程;
(2)求直線與曲線
的交點的直角坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com