【題目】已知函數在點
處取得極小值-5,其導函數
的圖象經過點(0,0),(2,0).
(1)求的值;
(2)求及函數
的表達式.
【答案】(1) ; (2)
,
.
【解析】
(1)對函數求導得到導函數,代入已知點得到參數值;(2)根據到函數的正負可得到函數的極小值點為x=2,由f(2)=-5,得c=-1.
(1)由題設可得f′(x)=3x2+2ax+b.
∵f′(x)的圖象過點(0,0),(2,0),∴
解得a=-3,b=0.
(2)由f′(x)=3x2-6x>0,得x>2或x<0,
∴在(-∞,0)上f′(x)>0,在(0,2)上f′(x)<0,在(2,+∞)上f′(x)>0.
∴f(x)在(-∞,0),(2,+∞)上遞增,在(0,2)上遞減,因此f(x)在x=2處取得極小值.
所以x0=2.由f(2)=-5,得c=-1,∴f(x)=x3-3x2-1.
科目:高中數學 來源: 題型:
【題目】某糕點房推出一類新品蛋糕,該蛋糕的成本價為4元,售價為8元.受保質期的影響,當天沒有銷售完的部分只能銷毀.經過長期的調研,統計了一下該新品的日需求量.現將近期一個月(30天)的需求量展示如下:
日需求量x(個) | 20 | 30 | 40 | 50 |
天數 | 5 | 10 | 10 | 5 |
(1)從這30天中任取兩天,求兩天的日需求量均為40個的概率.
(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量
的期望.
(3)根據(2)中的分布列求得當該糕點房一天制作35個該類蛋糕時,對應的利潤的期望值為;現有員工建議擴大生產一天45個,求利用利潤的期望值判斷此建議該不該被采納.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題 “存在
”,命題
:“曲線
表示焦點在
軸上的橢圓”,命題
“曲線
表示雙曲線”
(1)若“且
”是真命題,求實數
的取值范圍;
(2)若是
的必要不充分條件,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)若是定義在區間
上的“局部奇函數”,求實數
的取值范圍;
(3)若為定義域
上的“局部奇函數”,求實數
的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線交x軸于點A,交y軸于點B,拋物線
(
)經過點A,交x軸于另一點C,如圖所示.
(1)求拋物線的解析式.
(2)設拋物線的頂點為D,連接BD,AD,CD,動點P在BD上以每秒2個單位長度的速度由點B向點D運動,同時動點Q在線段CA上以每秒3個單位長度的速度由點C向點A運動,當其中一個點到達終點停止運動時,另一個點也隨之停止運動,設運動時間為t秒.PQ交線段AD于點E.
①當時,求t的值;
②過點E作,垂足為點M,過點P作
交線段AB或AD于點N,當
時,求t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明每天上學都需要經過一個有交通信號燈的十字路口.已知十字路口的交通信號燈綠燈亮的時間為40秒,黃燈5秒,紅燈45秒.如果小明每天到路口的時間是隨機的,則小明上學時到十字路口需要等待的時間不少于20秒的概率是
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com