精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設∠AOPθ,當△POC面積的最大值時θ的值為___________

【答案】30度

【解析】(本小題滿分12分)

解:因為CP∥OB,所以∠CPO∠POB60°θ,∴∠OCP120°.

△POC中,由正弦定理得

=,=,所以CPsinθ.

又=,∴OCsin(60°θ).

因此△POC的面積為S(θ)CP·OCsin120°

·sinθ·sin(60°θ)×sinθsin(60°θ)sinθ(cosθsinθ)

[cos(2θ60°)],θ∈(0°,60°).

所以當θ30°時,S(θ)取得最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正方體,點, , 分別是線段, 上的動點,觀察直線, .給出下列結論:

①對于任意給定的點,存在點,使得;

②對于任意給定的點,存在點,使得;

③對于任意給定的點,存在點,使得

④對于任意給定的點,存在點,使得

其中正確結論的個數是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三次函數的導函數,

(1)求的極值;

(2)求證:對任意,都有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一緝私艇發現在方位角45°方向,距離12海里的海面上有一走私船正以10海里/小時的速度沿方位角為105°方向逃竄,若緝私艇的速度為14海里/小時,緝私艇沿方位角45°+α的方向追去,若要在最短的時間內追上該走私船,求追擊所需時間和α角的正弦.(注:方位角是指正北方向按順時針方向旋轉形成的角,設緝私艇與走私船原來的位置分別為A、C,在B處兩船相遇).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數據

x

2

4

5

6

8

y

30

40

60

50

70

回歸方程為 =bx+a,其中b= ,a= ﹣b
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;
(2)根據表中提供的數據,求出y與x的回歸方程 =bx+a;
(3)預測銷售額為115萬元時,大約需要多少萬元廣告費.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖, 是半圓的直徑, 是半圓上除、外的一個動點, 垂直于半圓所在的平面, , , .

(1)證明:平面平面

(2)當三棱錐體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時4千米的速度向北航行,同時,乙船自B出發以每小時6千米的速度向北偏東60°的方向駛去.當甲船在A,B之間,且甲、乙兩船相距最近時,它們所航行的時間是(  )

A. 分鐘 B. 小時 C. 21.5分鐘 D. 2.15分鐘

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱柱中, 底面,底面為菱形, 交點,已知,.

)求證: 平面;

)求證: 平面;

)設點內(含邊界), ,說明滿足條件的點的軌跡,并求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某地區兒童的身高與體重的一組數據,我們用兩種模型①,②擬合,得到回歸方程分別為 ,作殘差分析,如表:

身高

60

70

80

90

100

110

體重

6

8

10

14

15

18

0.41

0.01

1.21

-0.19

0.41

-0.36

0.07

0.12

1.69

-0.34

-1.12

(Ⅰ)求表中空格內的值;

(Ⅱ)根據殘差比較模型①,②的擬合效果,決定選擇哪個模型;

(Ⅲ)殘差大于的樣本點被認為是異常數據,應剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.

(結果保留到小數點后兩位)

附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為, .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视