【題目】在中,邊
,
,
所在直線的方程分別為
,
,
.
(1)求邊上的高所在的直線方程;
(2)若圓過直線
上一點及
點,當圓
面積最小時,求其標準方程.
科目:高中數學 來源: 題型:
【題目】一年之計在于春,一日之計在于晨,春天是播種的季節,是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發芽的概率均為
,且每粒種子是否發芽相互獨立.對每一個坑而言,如果至少有兩粒種子發芽,則不需要進行補播種,否則要補播種.
(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?
(2)當時,用
表示要補播種的坑的個數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列的前
項和為
,對任意
,點
都在函數
的圖象上.
(1)求數列的通項公式;
(2)若數列,求數列
的前
項和
;
(3)已知數列滿足
,若對任意
,存在
使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區.在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記. 由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗. 在某普查小區,共有 50 家企事業單位,150 家個體經營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業單位 | 40 | 10 | 50 |
個體經營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區采用的抽樣方法;
(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;
(3)以頻率作為概率, 某普查小組從該小區隨機選擇 1 家企事業單位,3 家個體經營戶作為普查對象,入戶登記順利的對象數記為, 寫出
的分布列,并求
的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間
的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作燒水時間
關于開關旋鈕旋轉的弧度數
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若單位時間內煤氣輸出量與旋轉的弧度數
成正比,那么,利用第(2)問求得的回歸方程知
為多少時,燒開一壺水最省煤氣?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計值分別為
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com