【題目】已知二次函數 滿足
,且
.
(1) 求解析式;
(2)當時,
,求
的值域;
(3)若方程沒有實數根,求實數m取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求證:函數f(x)-g(x)必有零點;
(2)設函數G(x)=f(x)-g(x)-1
①若函數G(x)有兩相異零點且在
上是減函數,求實數m的取值范圍。
②是否存在整數a,b使得的解集恰好為
若存在,求出a,b的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義域為{x|x≠0}的函數f(x)滿足:f(xy)=f(x)f(y),f(x)>0且在區間(0,+∞)上單調遞增,若m滿足f(log3m)+f( )≤2f(1),則實數m的取值范圍是( )
A.[ ,1)∪(1,3]
B.[0, )∪(1,3]
C.(0, ]
D.[1,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AC于點E,點D是BC邊的中點,連接OD交圓O于點M.
(1)求證:O、B、D、E四點共圓;
(2)求證:2DE2=DMAC+DMAB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在
上的偶函數,且當
時,
.
(1)已畫出函數在
軸左側的圖像,如圖所示,請補出完整函數
的圖像,并根據圖像寫出函數
的增區間;
⑵寫出函數的解析式和值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,直線
過焦點
交拋物線于
兩點,
,點
的縱坐標為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點是拋物線
位于曲線
(
為坐標原點)上一點,求
的最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,直角梯形
通過直角梯形
以直線
為軸旋轉得到,且使得平面
平面
.
為線段
的中點,
為線段
上的動點.
()求證:
.
()當點
滿足
時,求證:直線
平面
.
()當點
是線段
中點時,求直線
和平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com