【題目】定義域為{x|x≠0}的函數f(x)滿足:f(xy)=f(x)f(y),f(x)>0且在區間(0,+∞)上單調遞增,若m滿足f(log3m)+f( )≤2f(1),則實數m的取值范圍是( )
A.[ ,1)∪(1,3]
B.[0, )∪(1,3]
C.(0, ]
D.[1,3]
【答案】A
【解析】解:∵f(xy)=f(x)f(y),f(x)>0則令x=y=1可得f(1)=f2(1),即有f(1)=1.
令x=y=﹣1,則f(1)=f2(﹣1)=1,則f(﹣1)=1.
令y=﹣1,則f(﹣x)=f(x)f(﹣1)=f(x),即有f(x)為偶函數.
由f(log3m)+f( )≤2f(1),可得 f(log3m)+f(﹣log3m)≤2f(1),
即2f(log3m)≤2f(1),即 f(|log3m|)≤f(1),
由于f(x)在區間(0,+∞)上單調遞增,則|log3m|≤1,且log3m≠0,
解得 ≤m<1或1<m≤3.
故選:A.
【考點精析】根據題目的已知條件,利用函數單調性的性質的相關知識可以得到問題的答案,需要掌握函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集.
科目:高中數學 來源: 題型:
【題目】下列幾個命題
①奇函數的圖象一定通過原點
②函數是偶函數,但不是奇函數
③函數f(x)=ax﹣1+3的圖象一定過定點P,則P點的坐標是(1,4)
④若f(x+1)為偶函數,則有f(x+1)=f(﹣x﹣1)
⑤若函數在R上的增函數,則實數a的取值范圍為[4, 8)
其中正確的命題序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐中,
平面
,底面
是菱形,
,
,
.
為
與
的交點,
為棱
上一點,
(1)證明:平面⊥平面
;
(2)若三棱錐的體積為
,
求證: ∥平面
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com