【題目】已知函數,
,其中
.
(1)試討論函數的單調性及最值;
(2)若函數不存在零點,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣a|.
(1)當a=2時,解不等式f(x)≥7﹣|x﹣1|;
(2)若f(x)≤1的解集為[0,2], =a(m>0,n>0),求證:m+4n≥2
+3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:對于函數,若在定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為定義域
上的“局部奇函數”?若是,求出所有滿足
的
的值;若不是,請說明事由.
(2)若是定義在區間
上的“局部奇函數”,求實數
的取值范圍.
(3)若為定義域
上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義域為{x|x≠0}的函數f(x)滿足:f(xy)=f(x)f(y),f(x)>0且在區間(0,+∞)上單調遞增,若m滿足f(log3m)+f( )≤2f(1),則實數m的取值范圍是( )
A.[ ,1)∪(1,3]
B.[0, )∪(1,3]
C.(0, ]
D.[1,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某商場旅游鞋的日銷售情況,現抽取部分顧客購鞋的尺碼,將所得數據繪成如圖所示頻率分布直方圖,已知圖中從左到右前三組的頻率之比為1:2:3,第二組的頻數為10.
(1)用頻率估計概率,求尺碼落在區間(37.5,43.5]概率約是多少?
(2)從尺碼落在區間(37.5,39.5](43.5,45.5]顧客中任意選取兩人,記在區間(43.5,45.5]的人數為X,求X的分布列及數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AC于點E,點D是BC邊的中點,連接OD交圓O于點M.
(1)求證:O、B、D、E四點共圓;
(2)求證:2DE2=DMAC+DMAB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,直線
過焦點
交拋物線于
兩點,
,點
的縱坐標為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點是拋物線
位于曲線
(
為坐標原點)上一點,求
的最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,點E、F分別是AB、CD的中點,點G在EF上,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖2.
(1)當AG+GC最小時,求證:BD⊥CG;
(2)當2VB﹣ADGE=VD﹣GBCF時,求二面角D﹣BG﹣C平面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com