計算
(1)
(2)
科目:高中數學 來源: 題型:解答題
某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為米,高為
米,體積為
立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為
元(
為圓周率).
(1)將表示成
的函數
,并求該函數的定義域;
(2)討論函數的單調性,并確定
和
為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)(1)已知函數f(x)=lnx﹣x+1,x∈(0,+∞),求函數f(x)的最大值;
(2)設a1,b1(k=1,2…,n)均為正數,證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則…
≤1;
②若b1+b2+…bn=1,則≤
…
≤b12+b22+…+bn2.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司承建扇環面形狀的花壇如圖所示,該扇環面花壇是由以點為圓心的兩個同心圓弧
、弧
以及兩條線段
和
圍成的封閉圖形.花壇設計周長為30米,其中大圓弧
所在圓的半徑為10米.設小圓弧
所在圓的半徑為
米(
),圓心角為
弧度.
(1)求關于
的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知關于x的一元二次函數
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為和
,
求函數在區間[
上是增函數的概率;
(2)設點(,
)是區域
內的隨機點,求函數
上是增函數的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數,若在定義域存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)設是定義在
上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠產生的廢氣經過過濾后排放,過濾過程中廢氣的污染物數量與時間
小時
間的關系為
.如果在前
個小時消除了
的污染物,試求:
(1)個小時后還剩百分之幾的污染物?
(2)污染物減少所需要的時間.(參考數據:
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com